Objectives of Work Package

WP 4.1 New materials and design for cylinder heads

- Improvement of thermomechanical cycle resistance of factor 2 under increased temperature of 50 K
- decreased weight of cylinder head of 20%

WP 4.2 New materials for the turbocharger turbine casing

- Typical Load Cycles for Ferry Applications
- Improvement of thermomechanical cycle resistance under increased temperature of 70 K under corrosion environment

WP Leader: Dr. Rayk Thumser, MDT -AUG Deputy: Santiago Uhlenbrock , MDT-AUG

10th May 2017, Winterthur

Material Tests for Material D •

Graphit content: 9.5 %. (Shrinkage cavities marked in black.

- Material Modelling
- Chaboche Plasticiy Model for time and temperature dependent cyclic plasticity (UMAT) <u>stress:</u> $\sigma = E \cdot (\varepsilon - \varepsilon^{th} - \varepsilon^{vp})$

- Online Crack Detection
 - Hardware for optical crack detection during hot and cold cycle
 - Preliminary tests to determine optimal hardware and geometric dimensions
 - Endoscope with integrated water cooling
 - Optical fibres with integrated water cooling
 - Camera with high resolution and simultaneously small image section

- Online Crack Detection
 - Determination of geometric boundaries
 - Light irradiation angle
 - Angle of view
 - Operating distance

- Online Crack Detection
 - Applied Algorithm
 - Commercial software HALCON updated with adapted code
 - Analyses process using 4 steps

- Online Crack Detection
 - Superior program for controlling all sequences
 - C# to cover HALCON library and test bench communication

- Online Crack Detection
 - Graphical user interface
 - To view and change settings regarding the crack detection process

ile					
					Start Stop
Test Bench Paramet	ers		-		Camera Positioning
Cycle No.	Temperature	Massflow	Camera Angles	Crack Threshold	Target Camera Angle
9	280,000 °C	800,000 kg/h	0,000 *	3,000 mm	0,000 °
					0. 100. 000.
					0 180 360
					Automatic Motor Control
Machine Vision					
Max. Crack Length					
4,900 mm	68.8409p	x	spx	14.25	Pril SEFERANCE
4,900 mm	68.0409p	x 253px 1066.259	арх 12. 8742рх рх		71. 9358366 102.679px 356.405px
4,900 mm	68.0409p	x 253px 106.259	арх 741.0742рх рх 575рх	apx	771-92592600 102. 679px 356. 405px

Introduction WP4.2

- Ferry applications are very cyclic marine applications. Thermo-mechanic fatigue damage is dominant compared to creep damage.
- Cruise liner applications are stationary applications with large dwell times at elevated temperature. Creep damage is dominant compared to thermo-mechanic fatigue damage.

- Finish of Material Test @BAM
- LCF, TMF and Creep material Test

P

• LCF

• TMF

• Creep

10th May 2017, Winterthur

Future Work

WP4.1

- Numerical studies material modeling, advanced plasticity model, simplified plasticity models, multiaxial TMF life prediction model
- TMF loaded component like specimen test and validation
- Optimization of cylinder head regarding TMF resistance and weight

WP 4.2

- Material model development
- Validation

