Objectives / Expected Results

Cut operating, maintenance and deployment costs

Develop systems, methods an processes for improved engine lifetime performance

Reduction of emission

- NOx: expanding operation range emission reduction technologies
- Particle: novel lubrication injection system

Enhance dynamic performance

Model-based control

Increased part load efficiency

Cylinder cut-out

WP Leader: Dr. M. Moser, T. Moeller

Vienna University of Technology

Karlsruher Institute of Technology

AVEN'

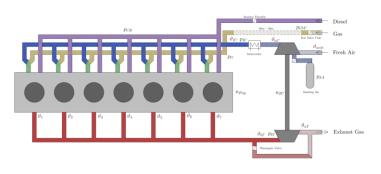
Linköping University

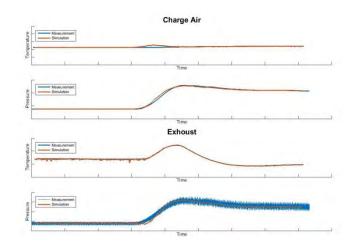
Aventics GmbH

Technical University of Denmark

National Technical University of Athens

WP 6.1: Predictive model-based engine control


Objectives

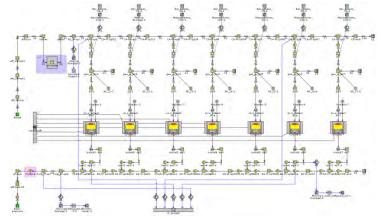

• Enhance dynamic engine performance with the help of multiple-in, multiple-out controllers

Current Status

- Literature research on Mean Value Models (MVM)
- Measurement data analysis
- Development of a mathematical air path model which is based on physical laws
- First implementations of a MVM for the air path in Matlab and OpenModellica

- Extending the MVM with the gas path
- Extending the MVM with the Diesel path
- Optimal parameter identification with WORHP
- Verification of the model

WP 6.2: Efficiency increase at part load


Objectives

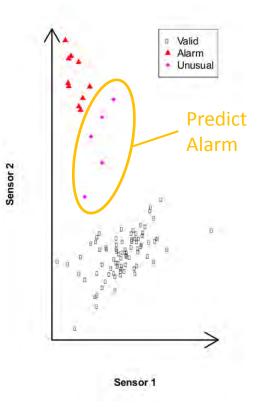
 Reduction of emissions and efficiency increase due cylinder cut-out

Current Status

- Measurement data collection and preparation
- Thermodynamic and Fluid mechanic modelling of the engine in GT-Power based on measurements

- Implementation of the turbocharger
- Application and evaluation of the predictive combustion model
- Implementation and calibration of the NO_x- and knock model
- Investigate different cut-out scenarios

WP 6.3: Development of intelligent algorithms for failure detection and plant analysis


Objectives

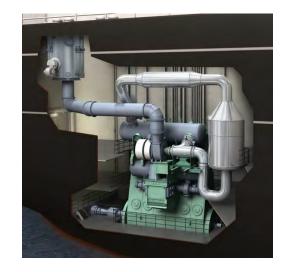
 New outlier-detection and subspace search methods for improve engine lifetime performance

Current Status

- Data collection, cleaning and preparation
- Additional feature generation (mean values, min/max deviations)
- Evaluation of different approaches to predict the alarm based on state of the art subspace search

- Enhance prediction through development and evaluation of novel alternatives
- Investigation of the data quality in terms of prediction quality

WP 6.4: Methods for evaluating engine performance via modeling and simulation


Objectives

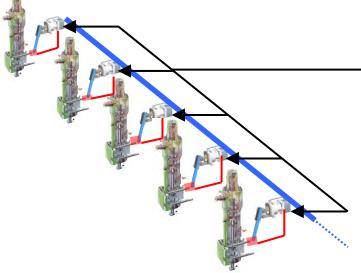
 Improve NO_x reduction in non normative engine operation by expanding the operation range of NO_x reduction technologies

Current Status

- Data collection for modelling SCR and EGR
- Modelling of low load operation on components
- Detailed modelling of SCR

- Establish a test cycle for comparison of solutions
- Build full engine + SCR/EGR models and validate data
- Design controllers and strategies

WP 6.5: Continuous combustion control & monitoring of mechanically controlled engines


Objectives

• Develop retrofit solution, incl. full scale demonstrator, for continuous engine performance optimization

Current Status

- Development of fuel pump VIT actuator prototype
- System outline for continuous cylinder pressure integration

- Adapt prototype actuator and control network for communication & integration into existing online cylinder pressure measuring system
- Build-up test-rig in laboratory

WP 6.6: Lifetime managed engine software deployment

Objectives

 Develop fleet solution for un-attended & secure engine software management

Current Status

- Develop a hardened engine software management platform
- Outline solution for secure centrally managed engine software configurations

Next steps

 Develop and introduce security scheme to all levels of production, installation and maintenance in service of engine network components, based on "CIA" principles -Confidentiality, Integrity & Availability

WP 6.7: Lifetime performance improvement by reduction of lubrication rate

Objectives

• Develop novel lube oil injection strategy in order to improve engine lifetime performance and cost

Current Status

- Initiation of a mathematical model of a lube oil injection system
- Basic investigation of the flow of lubricant injected based on test rigs generated during HERCULES-B & -C
- Development of lube oil distribution (LOD) test rig

- Experimental investigation of lube oil distribution
- Modelling of free/forced surface flows

