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It is known that mechanical wear and tear of components of
large marine engines throughout their lifetime can cause the
engine dynamics to alter. Since traditional control systems
with fixed parameters cannot deal with this issue, the en-
gine performance may degrade. In this work, we introduce
adaptive control algorithms capable of adapting the control
system in order to preserve the engine performance once its
dynamics deviate from the nominal ones. Particularly, di-
rect and indirect model reference adaptation mechanisms are
studied. In this work, the case of degraded oxygen sensor
is investigated as an example of engine components deteri-
oration throughout its lifetime. The controllers are imple-
mented in Simulink and their performance is evaluated un-
der both nominal and degraded sensor conditions. Specifi-
cally, the sensor degradation is imitated by altering its time-
delay. In such conditions, adaptive controllers demonstrate
a notable improvement in tracking performance compared to
the fixed parameters PI controller. Finally, the designed con-
trollers are validated on the hybrid marine engine testbed us-
ing dSpace rapid prototyping system.
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1 Introduction

During the last decades, marine diesel engine
emission regulations have become increasingly strin-
gent due to stricter environmental requirements im-
posed by the International Maritime Organization
(IMO) [1]. As a result, achievement of near-zero emis-
sions has recently become one of the key targets for ma-
rine engine manufacturers [2, 3].

Recently, the combination of an internal combus-
tion engine with an electric motor has emerged as a
powerful approach for reducing emissions within the
automotive industry [4]. A large number of research
papers has been devoted to evaluating various aspects
of hybrid electric vehicles (HEVs), including compo-
nents sizing, control systems design and topologies in-
vestigations. The control of HEVs is usually catego-
rized into rule- and optimization-based algorithms [5].
Various optimization-based algorithms have been pro-
posed for HEVs control, including model-predictive
control [6], optimal control based on Pontryagin’s min-
imum principle [7, 8], and genetic algorithms [9]. Typ-



ically, these algorithms solve a constrained optimal
control problem aimed at minimizing engine fuel con-
sumption, resulting in a globally optimal controller [4].

However, such optimization-based control algo-
rithms rely on fixed parameters and therefore provide
a global optimum only in the nominal case, i.e. the
case for which they were designed [5]. Moreover,
mechanical wear and tear of power-train components
throughout the vehicle lifetime may cause its dynamics
to change, leading to the non-optimized use of power,
since the optimal tuning of control systems differs for
new and worn-out engines [10, 11].

This problem becomes more critical in the marine
industry, as large-scale marine diesel engines are typi-
cally customized for each individual customer and are
therefore produced in very limited quantities. Together
with high running costs, this prevents thorough tuning
and testing which is, for example, available in the au-
tomotive industry, where engines are mass-produced
[12]. Moreover, since engines mounted on large ves-
sels are more difficult to maintain, the control systems
must be designed sufficiently robust to deal with en-
gine dynamics variation. Such variation can occur, for
example, due to severe operating conditions or aggres-
sive load transients (e.g., sailing through rough seas).

Many papers have addressed the problem of con-
trol system adaptation to varying engine dynamics in
the automotive industry. These include classical adap-
tive controllers [13], adaptive model predictive con-
trollers (MPC) [14] and controllers based on neural net-
work (NN), including self-tuning NN based control
[15], adaptive NN based MPC [16] and fuzzy NN based
sliding mode controller [17]. To the authors’ knowl-
edge little research has been published on the problem
of control system adaptivity within the marine indus-
try [18].

Hybridization in the marine industry is a relatively
new area with little research available. One of the prob-
lems concerning hybrid marine engines is the absence
of energy recuperation via braking, which is defined
by the marine driving cycle [19]. Driving cycles typi-
cal for the applications in the marine and automotive
industries have been compared in [19], which showed
that the typical speed profile of a cruise ferry, unlike
that of a city car, is almost constant over a large time-
interval, with few speed fluctuations. Hence, brak-
ing energy is effectively absent for recovery. Never-
theless, the motivation for use of hybrids in marine
applications is to unload the engine at high loads, es-
pecially during aggressive load transients, in order to
minimize emissions [19].In addition, propulsion en-
gines installed on cruise ferries are typically coupled to
so-called shaft generators, thus forming hybrid pow-
ertrain [20, 21]. Such generators are typically used to
supply the electricity for the entire ship (power take
out (PTO) mode) and to improve the maneuverability
of the vessel (power take in (PTI) mode). Therefore, the
control topology proposed in this article would only re-

quire a proper power-split control system rather than
the whole powertrain redesign, resulting in a low-cost
implementation.

In order to achieve the control target of unloading
the engine at high loads and during transients, the ap-
propriate engine parameter needs to be chosen for de-
scribing the current engine operation. In the case of
modern diesel engine, this parameter is the air-fuel ra-
tio (AFR), since it directly correlates with the engine-
out emissions (e.g., NOx, particulate matter) and cur-
rent load, and is easily available with an on-board stan-
dard sensor [22]. AFR can therefore be considered
a suitable cost for control purposes. Thus, control-
ling the torque supply from the electric motor can al-
low the AFR to be regulated to a set-point, thereby re-
ducing emissions. We note that there exist a variety
of technologies (e.g., variable geometry turbocharging
(VGT), turbines with wastegate, exhaust gas recircu-
lation (EGR)) aimed at reducing diesel engines emis-
sions by means of AFR regulation. However, these af-
fect the combustion mixture directly by means of in-
take air regulation or exhaust gas recirculation, while
the proposed PTI topology utilizes extra available elec-
tricity to reduce the loading of the propulsion engine.
Thus, the in-cylinder gas composition is still affected,
but indirectly via load moderation. Therefore, the pro-
posed topology can be utilized in a combination with
the existing more standard AFR regulation techniques
to provide additional degrees of freedom for the emis-
sions reduction.

In this work, the goal is to design and compare
direct and indirect adaptive control algorithms capa-
ble of adapting the control system to varying dynam-
ics of the hybrid marine diesel engine. We demon-
strate the benefits of such adaptive control concepts
usage by comparing the experimental results of the
hybrid power train control under nominal (or design)
and deteriorated sensor conditions. The deteriorated
sensor is imitated by altering the time-delay of the
universal exhaust gas oxygen (UEGO) sensor, as it is
known that the measurement delay can cause adverse
effect on the closed-loop control system. We also com-
pare the performance of the adaptive controllers with
a conventional fixed parameters control (FPC) strat-
egy, such as the proportional-integral (PI) controller, in
order to evaluate the feasibility of the proposed con-
trol approaches. First, the proposed control system
is evaluated via simulations in Matlab/Simulink us-
ing the validated hybrid engine model. The controllers
are tuned, and their performance is evaluated with the
nominal and altered system dynamics. Thereafter, the
controllers are deployed on the testbed, and their per-
formance is confirmed experimentally.

This paper is structured as follows. In Section 2 the
hybrid engine setup is presented, the first-principles
model is developed and validated. The adaptive con-
trollers are described in detail in Section 3. The nu-
merical simulation of the adaptive lambda controllers
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Fig. 1. Lambda control diagram of the hybrid integrated propulsion
powertrain. C - compressor, T - Turbine. The lambda sensor place-
ment is shown schematically (located downstream the turbine in real
setup).

is done in Section 4. The developed controllers are val-
idated with on-engine tests in Section 5 and the work
is concluded in Section 6.

2 System description and modeling
Fig. 1 shows the block-diagram of the hybrid in-

tegrated propulsion powertrain (HIPPO) closed-loop
lambda control configuration. The HIPPO is composed
of three main parts: Caterpillar 3176B marine diesel en-
gine (6 cylinders, 448 kW at 2300 rpm), water-brake dy-
namometer (1200 kW) and auxiliary induction motor
(110 kW). The key powertrain characteristics are listed
in Tab. 1.

The high-speed turbocharged diesel engine is
linked to the dynamometer and the water-brake via
cardan shaft. Depending on the test mode, the water-
brake dynamometer can provide a step-wise or a “pro-
peller” type of load. This way, we can imitate vari-
ous applications of hybrid marine engines, including
those for ship propulsion and on-board electricity gen-
eration. The propeller curve loading is, for example,
typical when the engine acts as a propulsion unit, while
the step-wise loading characterizes the generator mode
(or the auxiliary type engine) [23]. In order to provide
the desired load on the engine, the water-brake torque
is controlled in closed-loop using the specifically de-
signed robust H∞ controller. The modeling of the wa-
ter brake is outside the scope of this work, as the real
torque curves are used as the inputs for the powertrain
numerical simulations.

The induction motor is linked to the water-brake
directly to form a parallel hybrid engine configuration
and a frequency inverter is used to regulate the torque
output of the motor. The torque control mode is used
for the AC motor control and the rotational speed is
defined solely by the diesel engine. In our setup, the
induction motor is powered directly from the grid. Al-
though, in real marine application this would not be
feasible and a proper energy storage system would
be required, our test facility serves different purposes.
The main goal here is to evaluate the possibility of tran-
sient control of emissions, as well as to asses the feasi-

bility of the adaptive control algorithms.
In this section, a control-oriented model of the

hybrid engine is developed, simple but capable of
catching the dynamics in the variables of interest, i.e.
lambda, speed and torque. Modeling by the first prin-
ciples is used in this work. Initially more tedious,
theoretical modeling pays off at later stages of the
model-based control design, providing more informa-
tion about the system and reducing the need of nu-
merous plants, identified at various engine operating
points.

The standard mean value modeling technique is
used to model air and fuel path of the diesel engine [24–
27]. The nonlinear model of the hybrid propulsion
powertrain is implemented in Matlab/Simulink.

2.1 Induction motor model
The dynamics of the electromagnetic torque pro-

duced by the AC motor are nearly instantaneous in
comparison to the diesel engine. Furthermore, the in-
put to torque behavior of the motor is essentially linear
which allows us to simplify the model without com-
promising the data fit. Therefore, a linear transfer func-
tion model of the form

Mac

ucmd
=

K
τacs+1

(1)

can be used, where Mac (Nm) is the motor torque and
ucmd (V) is the frequency inverter command. The gain K
and the time-constant τac are chosen such, that a good
match with the experimental data is achieved.

2.2 Air-path system model
A simple third-order model of combustion engine

airpath was proposed and validated in [28]. In our
work, a few modifications to the existing model have
been done in order to improve the match with the
experimental data. The model is briefly summarized
hereafter. The time-dependency (t) in the modeling
equations is omitted for clarity. The intake and exhaust
pressures are defined by the ideal gas law and the mass
balance, while the turbocharger power — by the power
transfer between the compressor and the turbine

ṗi =
RiTi

Vi
(Wci−Wie) (2a)

ṗx =
RxTx

Vx
(Wie +Wf −Wxt) (2b)

Ṗc =
1
τc
(ηtPt −Pc), (2c)

where R (J·kg−1K−1), T (K) and V (m−3) denote the spe-
cific gas constant of the air, its temperature and the
manifold volume, respectively. The subscripts stand



Table 1. Engine and motor characteristics

Type Caterpillar 3176B marine diesel engine

General data In-line 6 cylinders, 4-stroke, 10.3 L

Power 448 kW @ 2300 rpm

Torque (limited) 500 Nm

Type Induction motor

Torque 250 Nm

Inverter control command 0. . .0.1 V

for the following engine components: i for the intake
manifold, x for the exhaust manifold, f for fuel, c for
the compressor and xt for the turbine. The effect of the
temperature derivatives Ṫi and Ṫx on ṗi and ṗx is ne-
glected, however, temperatures Ti and Tx itself are not
assumed constant (quasi-static approach) [25].

The compressor power Pc (W) is related to the tem-
perature across it and the air mass flow as

Pc =Wcicp(Ti−Ta), (3)

where cp,i (J·kg−1K−1) is the gas specific heat capacity
in constant pressure and Ta (K) is the ambient temper-
ature.

Under assumption of the isentropic compression

we know that Ti,is
Ta

= ( pi
pa
)

γ−1
γ . The efficiency of the com-

pressor is based on the temperature increase across it

ηc =
Ti,is−Ta

Ti−Ta
, (4)

where Ti,is is the isentropic compressor temperature.
Combining the above expressions, the temperature at
the compressor output can be expressed as

Ti = Ta

(
1+

1
ηc

((
pi

pa

)µ

−1
))

. (5)

The equation for compressor mass flow is obtained
by inserting Eqn. 5 into Eqn. 3

Wci =
ηcPc

Tacp,i

((
pi
pa

)µc
−1
) , (6)

where pa (Pa) is the ambient pressure, µc = (γc− 1)/γc
and γc = cp,i/cv,i.

The turbine power equation Pt is written similar to
Eqn. 3 as

Pt =WxtcpTx

(
1−
(

pa

px

)µx)
. (7)

It has been observed that the model match with the ex-
perimental data is greatly improved by approximating
the exhaust temperature as a function of the normal-
ized AFR or λ [26]

Tx = Ti +at1λ
at2 +at3, (8)

where the coefficients at1, at2 and at3 are used as tuning
parameters.

The mass flow Wie from the intake manifold into
the cylinders is based on the engines capacity to pump
the air

Wie =
Vdωe pi

v2πRiTi
ηv(ωe), (9)

where Vd (m−3) is the engine displacement volume and
v = 1 for four-stroke engines. The engine volumetric
efficiency ηv depends on several variables, but can be
approximated well by the quadratic function of the en-
gine speed ωe (rad/s) [26]

ηv = av1 +av2ωe +av3ω
2
e , (10)

where the coefficients av1, av2 and av3 are used as tuning
parameters.

The turbocharger has a fixed geometry without a
wastegate and is, therefore, fitted for the entire engine
operating range. Hence, the mass flow Wxt through the
turbine can be modeled using the orifice flow equa-
tion [29]

Wxt =
At√
RxTx

pxψ

(
pa

px

)
, (11)

where At (m2) is the constant turbine effective area and
ψ

(
pa
px

)
is the flow correction coefficient

ψ

(
pa

px

)
=



√√√√ 2γ

γ−1

((
pa
px

) 2
γ −
(

pa
px

) γ+1
γ

)
if

(
pa
px

)
> rc

γ
1
2

(
2

γ+1

γ+1
2(γ−1)

)
if

(
pa
px

)
≤ rc



where the critical pressure ratio is defined as rc =(
2

γ+1

) γ

γ−1 .

2.3 Fuel-path system model
The mean acceleration of the crankshaft is com-

puted from the torque balance equation, which in-
cludes four terms. Apart from the engine indicated Me,
friction M f r and water-brake (or load) Ml torque, an in-
duction motor torque Mac is taken into account. This
yields

ω̇e =
Me +Mac−M f r−Ml

J
, (12)

where J (kg·m2) is the engine moment of inertia. The
simplified equation for the mean engine indicated
torque Me is written under the assumption that the
engine indicated thermal efficiency ηi is a function of
speed and lambda

Me =
Wf Hi

ωe
ηi(ωe,λ), (13)

where Hi (MJ/kg) is the lower heating value of the fuel
and ηi = (a1 +a2ωe +a3ω2

e)(1−a4λa5) (see [26]).
The friction losses in the engine (e.g., pumping,

resistance between the piston rings, piston skirt and
cylinder wall, friction in crankshaft bearings, gears)
are accounted by introducing the friction torque M f r as
[29]

M f r =
fmepVd

2πv
, (14)

where the friction mean effective pressure fmep (kPa)
is approximated with the experimental equation [29]

fmep =C1+48(Ne/1000)+0.4S̄p
2
,

where C1 = 75 kPa is the constant, S̄p = 2SNe/60 is the
mean piston speed (m/s), S is the stroke (m) and Ne is
the engine rotational speed (rpm).

The crank rotational speed ωe is closed-loop con-
trolled by the engine built-in control mechanism which
continuously adjusts the amount of fuel Wf injected
into the cylinders.

The water-brake torque Ml is regarded as the exter-
nal disturbance in the simulations.

2.4 Relative air-fuel ratio definition
The controllable output of the hybrid powertrain

is the relative AFR λ that defines the air-fuel ratio nor-
malized by the stoichiometric constant λs

λ =
Wie

Wf
· 1

λs
(15)

The latter equation shows that λ is affected by the vari-
ables generated by the two engine subsystems, namely
air and fuel paths. Obviously, accurate models of
these subsystems should provide a good match be-
tween measured and simulated λ. The measurements
performed on the engine testbed have shown that the
AFR has a considerable time-delay τλ = 0.79 sec which
is explained by the exhaust gas transport delay due to
the UEGO sensor placement. This delay needs to be in-
cluded into the model, as it is known that time-delays
can have an adverse effect on control systems. Tak-
ing the delay into account in early stages of the control
design will allow to properly tune the controller and
study the potential instability issues.

We note that apart from the sensor location, the
time-delay is governed by the engine speed, to which
it is inversely proportional. Although the dependency
between the speed and delay is not investigated sep-
arately, the case of increased time-delay is covered by
the simulation and experimental studies.

2.5 Model implementation and validation
The developed control-oriented model of the hy-

brid powertrain is implemented in Simulink, as it is
then easy to download the designed controller to the
Dspace engine control board for rapid prototyping.
The fixed-step discrete-time solver with the sampling
time t = 0.01 sec is used during the simulation.

The parameters estimation and the subsequent
model validation is done using the experimental data
from the HIPPO testbed. For this purpose its dynamics
were excited using the pseudorandom binary sequence
(PRBS) excitation input to the frequency inverter and
the time-domain transient data for λ, ωe, Me and Ml was
recorded.

The constructed model contains a number of pa-
rameters that are not known precisely and/or cannot
be measured. Therefore, these are estimated using the
Matlab parameter estimation toolbox and then fine-
tuned manually to obtain the best data fit. These pa-
rameters include: av1, av2, av3, ηc, ηt , At , a1, a2, a3, a4 and
a5. The data-set 1 for the diesel engine speed, lambda
and torque used in the parameter estimation is shown
in Fig. 2 and Fig. 3 (top). The PRBS excitation signal is
also shown in Fig. 3 (bottom).

The model is verified with the data-set 2 obtained
at another engine operating point where the engine
speed and torque were varied simultaneously accord-
ing to the propeller curve profile (see Fig. 4). The
torque profiles for measured and simulated data as
well as the frequency inverter control command are
demonstrated in Fig. 5.

The quality of the model is assessed using the root
mean square (RMS) error

RMSE =

√
∑

N
i=1(ŷi− yi)2

N
,
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for the engine torque. Water-brake and induction motor torque pro-
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also shown. Legend (top plot): —— simulated diesel torque, -
- - measured diesel torque, —— measured motor torque, ——
measured load torque.

where ŷ and y are the modeled and measured out-
puts, respectively and N is the amount of measurement
points. The RMS error values for the engine speed,
lambda and torque on the estimation and validation
data-sets are shown in Tab. 2. It can be seen that the
RMS errors for the estimation data-set 1 are small com-
pared to the mean values of the respective data, indi-
cating sufficiently good model fit. Tab. 2 also shows
that the RMS error of the engine speed on the valida-
tion data-set 2 increases, whereas the RMS errors for
torque and lambda remain low.

The conclusion can be drawn that the mean value
model of the hybrid powertrain behaves equally well
at various engine operating points and can be there-
fore utilized for further control design and tuning pro-
cedures.

3 Adaptive power split controller design
In this section we introduce and further design the

direct and indirect versions of the well-known model
reference adaptive control (MRAC) algorithm. In
both of these control approaches the desired dynami-
cal plant behavior is defined by the reference model.
We exemplify the application of the first-order refer-
ence model with the direct adaptation scheme and the
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Fig. 4. Model validation with the mild propeller curve. Measured
and simulated data for the engine torque and lambda. Legend: —
— simulated, - - - measured.
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Fig. 5. Model validation with the mild propeller curve. Measured
and simulated data for the engine torque. Water-brake and induction
motor torque profiles as well as the commanded signal for the fre-
quency inverter are also shown. Legend (top plot): —— simulated
diesel torque, - - - measured diesel torque, —— measured motor
torque, - - - measured load torque, —— simulated total powertrain
torque.

second-order model with the indirect scheme. For
more details on the MRAC algorithms the reader is re-
ferred to [30, 31]. In addition, the baseline PI controller
is designed to support the need of more advanced al-
gorithms.

3.1 Direct output error adaptive control
The direct adaptive control algorithm can be

thought of as a simplified version of indirect adap-
tive control, since the controller parameters are directly
identified from the process, i.e. the identifier and con-
trol parameters are identical. Fig. 6 shows a block di-
agram of the direct adaptive control scheme and its
structure is summarized hereafter.

The core of the algorithm is the error

e0 = yp− ym

between the plant and the reference dynamical model
outputs yp (λ in our case) and ym, respectively. The
key property of the direct adaptation is that the stabil-
ity and asymptotic tracking can be guaranteed only if



Table 2. Root mean square error (RMSE) of the modeled lambda, speed and torque during the estimation and validation.

Diesel torque (Nm) Engine speed (rpm) Lambda

Data-set 1 Mean 289 1605 3.31

RMSE 18 7 0.28

Data-set 2 Mean 286 1491 3.16

RMSE 12 19 0.28

HIPPO

Identifier
Controller

Direct adaptive controller

Linear model

-

Fig. 6. Direct adaptive control algorithm block-diagram. Designa-
tions: Nsp

e — engine speed set-point, Msp
e — load torque set-point.

the plant is minimum-phase [31]. Based on the exper-
imental data for lambda transient response (see Fig. 2)
it can be confirmed that our plant is indeed minimum-
phase. Therefore, under this assumption, the stable
model is chosen to be minimum phase, with the nu-
merator nm(s) and denominator dm(s) being both monic
and coprime polynomials and the gain km > 0. Assum-
ing that the plant behavior can be represented well by
the first-order dynamics (n = 1), the model is chosen as

ym

r
=

km

s+am
,

where r is the reference value and am is a positive con-
stant. In general, the controller structure involves the
filters for the input ẇww(1) = ΞΞΞwww(1) + bbbξu and the output
ẇww(2) = ΞΞΞwww(2) + bbbξyp [30], however the design parame-
ters ΞΞΞ ∈R(n−1)×(n−1) and bbbξ ∈R(n−1) vanish when n = 1,
thus simplifying the controller structure.

In addition, the vector of controller parameters θθθ(t)
and the vector of signals www(t) are reduced to

θθθ(t) =
[
c0(t) d0(t)

]T www(t) =
[
r(t) yp(t)

]T
,

where c0(t) and d0(t) are the time-varying parameters
(no physical interpretation) used for the control law
calculation. Due to the limits enforced by the frequency
inverter, the control signal is calculated as


u = umin if u≤ umin

u = θθθ
T www if umin < u < umax

u = umax if u≥ umax

(16)

The gradient decent algorithm is used to adapt the con-
trol parameters

θ̇θθ =−ge0www,

where g is the tuning parameter. In order to improve
the robustness and solve the saturation problem two
update law modifications have been done:

1. Leakage term. This modifies the parameter update
law to prevent the parameters drift into the insta-
bility region [30]

θ̇θθ =−ge0www−σθθθ,

where σ > 0 is a small constant used to keep θθθ

bounded.
2. Anti-windup mechanism. This is a “dead-zone”-

like update law modification which stops the adap-
tation, once the control signal gets saturated. The
control signal saturation error is defined as ea =
usat − u, where usat is the saturated control signal
entering the plant and u is the signal generated by
the controller. The update law is modified as

{
θ̇θθ =−ge0www−σθθθ if |ea| ≤ γ

θ̇θθ = 0 if |ea|> γ,

where γ is chosen small enough to stop the adapta-
tion when saturation occurs.

3.2 Indirect adaptive (self-tuning) control
In this method a clear distinction is done between

the controller and plant parametrization. Fig. 7 shows
the block diagram of the indirect adaptive control algo-
rithm. In this subsection we outline the control design
procedure, however for more details the reader is re-
ferred to [30].

Unlike in the direct adaptation, the core of the in-
direct adaptation algorithm is the identification error

e3 = yi− yp (17)
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Fig. 7. Indirect adaptive control algorithm block-diagram. Designa-
tions: Nsp

e — engine speed set-point, Msp
e — load torque set-point.

where yi is the identified output. The plant is identi-
fied using the identification procedure of choice and
the identified parameters are used to construct the con-
troller. The plant identified parameters are assumed to
be the true ones (the certainty equivalence principle).
We demonstrate the algorithm implementation based
on the second-order reference model (n = 2) with a rel-
ative degree 1

M(s) =
nm(s)
dm(s)

=
ω2s+1

s2 +2ζωs+ω2 , (18)

which is chosen to be stable and minimum-phase as in
case of direct adaptation scheme and ω and ζ are the
design parameters.

The controller design starts by defining the iden-
tifier which is known as an equation error identifier
[32]. It estimates the process parameters in a specific
parametrization (no physical interpretation)

πππ
T =

[
aaaT bbbT ]= [a1 a2 b1 b2

]
, (19)

which are used to calculate the process identified out-

put yi = πππT w̃ww, where w̃ww =
[
w(1)

1 w(1)
2 w(2)

1 w(2)
2

]T
∈ R4.

The controller internal signals ẇww(1) and ẇww(2) are de-
fined in [30] as

ẇww(1) = ΞΞΞwww(1)+bbbξu

ẇww(2) = ΞΞΞwww(2)+bbbξyp,
(20)

which are the first order low-pass filters.
The design parameters ΞΞΞ ∈ R2×2 and bbbξ ∈ R2 have

to be chosen in controllable canonical form [30], such
that

ξ(s) = det(sI−Ξ) (21a)
ξ0(s) = ξ(s)/nm(s) (21b)

where ξ(s) is Hurwitz.
The control signal is calculated as

u = θθθ
T www

with the vector of parameters θθθ and regression vector
www defined as

θθθ
T =

[
c0 cccT dddT ]= [c0 c1 c2 d1 d2

]
∈ R5

wwwT =
[
r www(1)T

www(2)T
]
∈ R5,

where vector θθθ is obtained from vector πππ in the param-
eters’ transformation block (Fig. 7). The transformation
is assumed to be done instantaneously and the proce-
dure is outlined hereafter. First, the time-varying poly-
nomials a(s),b(s),c(s) and d(s) are defined to be of n−1
order

a(s) = a1 +a2s c(s) = c1 + c2s

b(s) = b1 +b2s d(s) = d1 +d2s,
(22)

where ai(t), bi(t), ci(t) and di(t) are time-varying coeffi-
cients, although time-dependency (t) is omitted to pre-
vent mixing time and frequency domains.

The transformed coefficients c1,c2,d1 and d2 can
now be obtained with the following polynomials [30]

c(s) = ξ(s)− 1
a2

q(s)a(s) (23a)

d(s) =
1
a2

(q(s)ξ(s)−q(s)b(s)−ξ0dm(s)) (23b)

c0 =
km

a2
, (23c)

where the quotient q(s) is n− 1 order polynomial de-
fined as

q(s) =
ξ0(s)dm(s)
ξ(s)−b(s)

(24)

Note: the simulation has shown that the a2 parameter
tends to drift to zero with time. Therefore, it will even-
tually result into a division by zero in Eqn. 23a, 23b, 23c
and the output of the controller will become not a num-
ber (NaN). This might go unnoticed if the simulation
time is not long enough, but will become an issue once
the controller is deployed to the real process. Hence,
the parameter a2 must always be bounded away from
zero, which is guaranteed by the following condition

if a2 = amin and ȧ2 < 0 reset ȧ2 = 0.



It is noted that the transformation of the parameters
outlined above is not straightforward for implementa-
tion. Therefore, the algorithm for practical implemen-
tation is derived in Appendix A.

The parameters adaptation law is a gradient decent
algorithm extended with a leakage term as in the case
of direct adaptation

π̇ππ =−γe3w̃ww−σπππ, (25)

where γ is the tuning parameter (aggressiveness).

4 Simulation study
Before deploying the developed controllers to the

testbed, we evaluate their performance via numerical
simulation. Apart from the nominal stability, the goal is
to demonstrate that the controllers remain stable in the
presence of drifting parameters in the controlled pro-
cess. The parameter drift can be caused by various rea-
sons, starting with the changing engine operating con-
ditions (e.g., cold-start, part load, full load) and ending
with the components (e.g., sensors, actuators, valves)
mechanical wear and tear over time.

In the simulation test case scenario the hybrid en-
gine was run at the constant speed 1600 rpm and the
load step changes were applied: 500→ 300 (Nm) at 215
sec and 300→ 500 (Nm) at 230 sec. The goal was to
track the lambda set-point 3.1 and to reject the load
disturbance. As mentioned earlier, the induction mo-
tor was used in torque control mode and did not affect
the rotational speed of the powertrain.

To evaluate the performance of the designed adap-
tive controllers, each of them was at first tested under
the nominal plant conditions. As it is known that adap-
tive controllers can exhibit instability even after the ini-
tial parameters convergence, the simulation time was
chosen long enough to account for that. In addition,
the aggressive load variation was applied. As a result,
a few robust modifications to each controller were done
as described in Section 3.

The adaptive control concepts were justified via
simulations with the altered process parameters. In
this case the lambda sensor time-delay was assumed
to be abruptly increased 0.79 → 2.29 sec due to sen-
sor wear. It should be noted that such a considerable
increase in sensor delay is likely to be alarmed by the
on-board diagnosis system for replacement. However,
the main purpose of the adaptive control system is to
provide sufficient engine performance despite possible
components degradation until they can be maintained.

Fig. 8 shows the comparison of the adaptive and
fixed parameters control performance under the nom-
inal and degraded sensor conditions. It can be seen
that adaptive controllers behave very similarly under
both conditions, while the FPC starts to oscillate when
the time-delay is increased. We note that the FPC

transient response is more aggressive in the nominal
case as compared to the adaptive controllers. It could
be de-tuned in order to remain stable under the in-
creased measurement time-delay, however the original
response then becomes unacceptably slow.

It can bee seen (Fig. 8) that the adaptive control
technique is capable of adapting the controller param-
eters in such a way as to keep the predefined perfor-
mance of the control system despite the variation of
the plant parameters (measurement time-delay). In this
work the time-delay was not explicitly included in the
linear reference models in order the controller com-
plexity to remain low and be feasible for the testbed
implementation. As the rigorous mathematical proof
of the stability of adaptive control system applied to
a nonlinear system with time-varying delay is a non-
trivial task, we verify the designed control systems via
experiments.

5 Experimental study
Since the desired controllers behavior has been

achieved in the numerical simulation, these results can
now be experimentally verified. The HIPPO testbed,
where all the measurements and experiments were per-
formed, is shown in Fig. 10.

The performance of the designed controllers is
evaluated with two test case scenarios:

1. The mild load variation 400→ 300→ 400 (Nm) is
applied.

2. The more aggressive load variation 500→ 300→
500 (Nm) is applied.

In both scenarios the engine was run at 1600 rpm and
the AFR reference λre f = 3.1 was tracked. The results
of the AFR control for the cases 1 and 2 are shown in
Fig. 9 and Fig. 11, respectively. In addition, the ap-
plied load and the frequency inverter control signal are
shown. The load profile uneven shape is explained
by the water-brake behavior which introduces little
oscillations and irregularities to the generated torque.
The AFR identification for the indirect adaptive control
scheme is shown in Fig. 13.

Fig. 12 demonstrates the torque developed by the
engine, motor and the water-brake during the load
transients for the nominal value of the oxygen sensor
delay.

By comparing Fig. 8 and Fig. 11 we can see that
the experimental results closely resemble the numerical
simulations allowing us to rely on the developed hy-
brid engine model for further powertrain analysis and
control.

In each case, the controllers are evaluated under
the nominal and altered process parameters. It can be
visually observed that the increased time-delay affects
neither the adaptive controllers nor the FPC when the
load variation is mild (Fig. 9), whereas it does have an
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Fig. 8. Simulation study of the adaptive controllers. Lambda set-point tracking λ= 3.1 during load step-change. Nominal and measurement
delay cases are compared. Load step change 500→ 300 (Nm) is done at 250 sec and 300→ 500 (Nm) at 265 sec. Legend: ——
nominal case, —— measurement delay, - - - lambda set-point.
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Fig. 9. Experimental verification of the adaptive controllers. Lambda set-point tracking λ = 3.1 during mild load step-change 400→
300→ 400 (Nm). Nominal and measurement delay cases are compared. Load step change 400→ 300 (Nm) is done at 80 sec and
300→ 400 (Nm) at 95 sec. Legend: —— nominal case, —— measurement delay, - - - load, - - - lambda set-point.

impact on their performance when the load variation is
large (Fig. 11).

Therefore, for the case 2 we record the controllers
time-domain characteristics, including settling time,
overshoot and peak, under the nominal and degraded
sensor conditions. The characteristics are summarized
in Tab. 3. It can be seen that the increase of the mea-
surement time-delay slightly deteriorates the perfor-
mance of adaptive controllers, causing the settling time
to increase by approximately 4 sec for OA and IA al-
gorithms. In addition, the lambda overshoot for these

controllers grows by about 3% and 5.5 %, respectively.
However, the FPC fails to maintain the desired perfor-
mance and starts to oscillate.

The engine-out NOx emissions with the AFR
closed-loop control has been measured during aggres-
sive load transients. Fig. 14 demonstrates the compar-
ison of the measured NOx emissions for the case of de-
graded UEGO sensor when the adaptive and fixed pa-
rameters controllers are online. It is seen that unload-
ing of the engine results into emissions reduction as ex-
pected. In addition, the AFR set-point tracking with



Table 3. Experimental study. Controllers behavior after the change in the oxygen sensor time-constant. Tracking the reference λ = 3.1.
FPC — fixed parameters control, DA — direct adaptive, IA — indirect adaptive.

Time delay Controller FPC DA IA

Rise time (sec) 4.40 28.65 8.50

τ = 0.79 (sec) Settling time (sec) 22.91 21.58 23.63

Overshoot (%) 4.00 0.07 3.21

Peak value 3.22 3.05 3.19

Time delay Rise time (sec) 4.50 6.34 8.50

Settling time (sec) oscillating 25.20 27.46

τ = 2.29 (sec) Overshoot (%) 10.42 3.25 8.96

Peak value 3.42 3.14 3.31

Fig. 10. Hybrid integrated propulsion powertrain on which all the
measurements and experiments presented in the paper are per-
formed. Caterpillar 3176B (dark yellow), water-brake (dark green)
and the induction motor (gray) are shown. The cardan shafts con-
necting the powertrain are covered with the yellow colored casings.

adaptive controllers provides better NOx regulation in
comparison to the FPC control thereby supporting the
idea of the control parameters adaptation.

6 Conclusion
In this article the adaptive control algorithms were

shown to successfully deal with the unexpected varia-
tion of the parameters in the hybrid marine diesel en-
gine. The direct and indirect forms of MRAC algo-
rithms were designed and their performance was eval-
uated.

First, the developed controllers have been assessed
in a simulation environment using the validated mean
value model of the hybrid engine. Extensive simula-
tions have shown that a need of more robust concepts
exists. The so-called sigma modification was done to
both algorithms to increase their robustness. Further-
more, the anti-windup “dead-zone”-like mechanism
was added to the direct adaptation scheme in order to
stop the adaptation during the control saturation.

Thereafter, the designed controllers were validated
with the on-engine tests on the hybrid diesel engine
testbed. The benefits of using the adaptive control
algorithms were demonstrated by conducting experi-
ments in which the engine parameters changed over
time. This change was done by artificially increasing
the measurement time-delay of the exhaust gas oxygen
sensor. Both adaptive control algorithms were able to
keep the predefined control system performance with
only minor deterioration. At the same time the con-
troller with fixed parameters showed oscillatory re-
sponse significantly degrading the overall engine per-
formance.

It can be concluded, that controller parameters
adaptation to the varying engine dynamics is an im-
portant feature which allows to keep the predefined
engine performance and should be therefore consid-
ered during the control system design. Eventually, con-
trol adaptation prevents increased formation of engine-
out emissions, thus reducing the negative impact of en-
gines on the environment.
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Nomenclature
Physical and geometrical quantities
M torque, Nm
ucmd frequency inverter command, V
K motor model gain
τac motor model time-constant
R specific gas constant, J·kg−1K−1
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Fig. 11. Experimental verification of the adaptive controllers. Lambda set-point tracking λ = 3.1 during aggressive load step-change
500→ 300→ 500 (Nm). Nominal and measurement delay cases are compared.Load step change 500→ 300 (Nm) is done at 170 sec
and 300→ 500 (Nm) at 185 sec. Legend: —— nominal case, —— measurement delay, - - - load, - - - lambda set-point.
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Fig. 12. Experimental verification of the adaptive controllers. Torque
curves for diesel engine and electric motor are shown for the de-
signed controllers during lambda set-point tracking λ = 3.1. Leg-
end: —— fixed parameters controller, —— direct adaptive, ——
indirect adaptive, - - - load.

T temperature, K
V manifold volume, m−3

cp,i gas specific heat constant, J·kg−1K−1

γc = cp,i/cv,i specific heat ratio
µc = (γc−1)/γc constant
P power, W
W mass flow, kg/s
λ air-fuel ratio
Vd engine displacement volume, m−3

η efficiency, %
ωe engine speed, rad/s
A area, m2

ψ() flow correction coefficient

rc =
(

2
γ+1

) γ

γ−1 critical pressure ratio

J mass moment of inertia, kg·m2

Hi lower heating value of the fuel, MJ/kg
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Fig. 13. Experimental results. Lambda online identification. Leg-
end: —— measured lambda, —— online identified lambda, - - -
lambda set-point.

fmep friction mean effective pressure, kPa
S̄p = 2SNe/60 mean piston speed, m/s
S stroke, m
Ne engine rotational speed, rpm

Subscripts
ac alternating current
cmd command
i intake
x exhaust
f fuel
c compressor
xt turbine
a ambient
is isentropic
e engine
l load
fr friction
s stoichiometric
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Fig. 14. Experimental study. Measured NOx emissions with the
AFR closed-loop control and degraded UEGO sensor. Legend (top
plot):
—— fixed parameters control, —— output adaptive

control, —— indirect adaptive control, - - - load.

Abbreviations
IMO international Maritime Organization
PTO power take out
PTI power take in
UEGO universal exhaust gas oxygen
HIPPO hybrid integrated propulsion powertrain

A Practical implementation of the parameters trans-
formation for the indirect adaptive control algo-
rithm
Here we derive the equations for the time-varying

coefficients defined in Eqn. 22 which are straightfor-
ward for implementation in Simulink. The equations
are derived for the model defined in Eqn. 18 with ω = 1
and ζ = 1.

It is seen from Eqn. 24 that the quotient q(s) is a
first order monic polynomial

q(s) = s+q0. (26)

Taking into account Eqn. 24

(s+q0)(ξ(s)−b(s)) = ξ0(s)dm(s)

Inserting the expressions for ξ(s), b(s), ξ0(s) and dm(s),
which are defined in Eqn. 21a, 22, 21b and 18, respec-
tively, the Diophantine equation can be written as

s3 +3s2 +3s+1 =

s3 +(2−b2 +q0)s2 +(1−b1 +q0(2−b2))s+q0(1−b1)

(27)

In order the q(s) to be the first order polynomial we
have to equate the coefficients of s3 and s2 of Eqn. 27.

This yields

(2−b2 +q0) = 3⇒ q0 = 1+b2 (28)

The polynomial c(s) is defined in Eqn. 23a. Inserting
polynomials for ξ(s), q(s) and a(s), which are defined
in Eqn. 21a, 26 and 22, respectively, the c(s) polynomial
coefficients can be obtained

c(s) = (2− a1

a2
−q0)︸ ︷︷ ︸

c2

s+(1−q0
a1

a2
)︸ ︷︷ ︸

c1

(29)

The polynomial d(s) is defined in 23b. Inserting poly-
nomials for ξ(s), q(s), b(s), ξ0(s) and dm(s), which are
defined in Eqn. 21a, 26, 22, 21b and 18, respectively, the
d(s) polynomial coefficients can be obtained

d(s) =
1
a2

(−2−b1 +(2−b2)q0)︸ ︷︷ ︸
d2

s+
1
a2

(q0−b1−1)︸ ︷︷ ︸
d1

(30)

The expressions for the coefficients of the time-varying
polynomials can now be summarized as

q0 = 1+b2 d1 = (b2−b1)/a2

c1 = 1− a1

a2
−b2

a1

a2
d2 = (b2−b1−b2

2)/a2

c2 = 1−b2−
a1

a2

(31)

The Eqn. 31 shows that the transformation π(t)⇒ θ(π),
in fact, consists of fixed number of simple mathemati-
cal operations (division, multiplication, addition).
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