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Adaptive and Unconventional Strategies
for Engine Knock Control

Donald Selmanaj, Giulio Panzani, Stijn van Dooren, Jonatan Rosgren and
Christopher Onder

Abstract

Knock is an undesirable phenomenon affecting gasoline spark-ignition (SI) engines. In order to
maximize engine efficiency and output torque while limiting the knock rate, the spark timing should be
adequately controlled. This paper focuses on closed-loop knock control strategies. The proposed control
strategies, compared to conventional approaches, show improved performances while remaining simple
to use, implement, and tune. Firstly, a deterministic controller which employs a logarithmic increase
of the spark timing proves to outperform the conventional strategy in terms of spark timing average
and variance. In addition, an adaptive parameter strategy which exploits stochastic information of the
process is introduced. Thanks to this extension the average and the variance of the spark timing are
additionally improved while preserving tuning easiness and the fast reaction times of the deterministic
strategy. Throughout the paper all the knock controllers are compared with a conventional deterministic
strategy and with a recently proposed stochastic one. The advantages of the proposed approaches are
confirmed both by simulation and by experimental data collected at a test bench.

Index Terms

knock control, SI engines, adaptive, stochastic.

NOMENCLATURE

A. Acronyms

bTDC Before Top Dead Centre.

MAPO Maximum Amplitude of Pressure Oscillations, used to detect an engine knocking cycle.

[bar]

B. Symbols

S Spark timing. [◦bTDC]

Kret Spark timing reduction for a knocking cycle. [◦]

Kadv Spark timing increase for a non-knocking cycle. [◦]
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Pref Target knock probability. [%]

j Engine cycle counter. [-]

Lr Likelihood ratio. [-]

C. Subscripts

c referred to the conventional control strategy.

u referred to the unconventional control strategy.

ac referred to the adaptive conventional control strategy.

au referred to the adaptive unconventional control strategy.

k referred to the knock event.

th referred to a threshold value.

I. INTRODUCTION

Engine knock has its name from the audible noise that results from autoignition in the unburned

part of the gas. This phenomenon is a major limitation for SI engines since it causes undesired

pressure oscillations in the combustion chamber. To avoid engine knocking, in addition to limiting

the compression ratio and lowering the levels of pressure and temperature, the engine has to be

run in a sub-optimal way - w.r.t. efficiency or delivered engine torque - for example delaying

the spark timing from its optimal value [1], [2]. Closed-loop knock control systems acting

on spark timing confront the trade-off between knock rate limitation and engine performance

maximization.

While considerable research efforts have been dedicated to the problem of knock detection

and description [3]–[14], knock control strategies have received less attention. A conventional

and widely used in industrial applications strategy consists in rapidly retarding the spark timing

if a knock event is observed and slowly advancing it during non-knocking cycles [15]. This

strategy is also referred to as deterministic since it acts at each knock event, disregarding the

highly random behaviour if this phenomenon.

Alternative solutions consist in modelling and controlling statistical properties of knock and

for this reason they are usually referred to as stochastic. The majority of the scientific literature

approaches the problem using some indirect metrics to describe the knock event. One possibility

is to quantify its intensity through engine case accelerations and to build a knock energy

indicator which is regulated via a proportional integral (PI) controller [16]. The method requires

the estimation of the mean and the variance of the acceleration signal energy, which slows
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the controller action. Similar approaches based on Ion current measures [17] and combustion

indicators [2], [18] aim at improving controller responses by adding fast control actions.

A different stochastic philosophy neglects the knock intensity information and focuses only on

statistic properties of knock occurrence [15]. In this way the description of the knock phenomenon

is simplified, as knock events can be easily modelled by standard statistical (e.g., binomial)

distributions. Following this philosophy a controller that monitors the cumulative summation of

knock events and compares it with a desired rate is proposed in [19]: the controller doesn’t

act at each knock event but it retards/advances the spark timing when the difference between

the observed and the desired knock rate exceeds a threshold. Additional improvements of this

method are presented in [20], where the likelihood ratio serves as indicator of the discrepancy

between the observed and the desired knock occurrence distribution and it is used to modulate

the action of the previously mentioned controller. When compared to deterministic strategies this

approach shows good results on both simulation and experimental data [21]. Although effective,

stochastic knock controllers require non-trivial tuning procedures and have an overall delayed

transitory response given that statistic knock properties are estimated in real time.

Other recent methods are based on the concept of margin (or distance) from the knocking

condition. They relate knock occurrence to measurement data also during non-knocking cycles.

One simple example is the peak pressure [22]: cycles with higher peak pressures are more likely

to result in knocking ones. Exploiting the same philosophy, in [23], the authors build a gray-box

model of the knock margin that proves effective in estimating the actual knock rate in various

engine operating conditions, outperforming more traditional physics-based approaches. Despite

the lack of an intensive experimental validation of closed-loop control strategies, such approaches

require a considerable modelling effort and do not consider engine aging, which also can change

the relation between measurement data and knock occurrence.

In this work, three strategies are proposed aiming at improving the deterministic and stochas-

tic controllers. The first method introduces a logarithmic advance of the spark timing during

non-knocking cycles. The second and third methods are adaptive strategies that combine the

advantages of deterministic controllers (i.e., fast action, implementation and tuning ease) with

the enhanced performance of stochastic controllers. The methods are tested and compared

on an engine-validated knock stochastic simulator and at test bench, outperforming both the

conventional and the benchmark stochastic strategy [20].

The paper is organized as follows: Section II presents an overview on the knock phenomenon
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and its stochastic modelling. Section III proposes a new deterministic controller. Section IV

introduces the full adaptive scheme combining deterministic controllers with a stochastic adap-

tation of their parameters. In Section V and Section VI the simulation and experimental results

are shown and analysed.

II. STOCHASTIC KNOCK MODELLING

The most evident effect of knock occurrence is the pressure oscillation in the combustion

chamber, whose amplitude is strongly related to the knock intensity. The pressure oscillation can

be isolated by properly band-filtering the pressure signal and used to establish various knock

metrics: here the MAPO is considered [24]. This metric is the one most commonly used due

to its easy implementation and its tight bond with knock intensity. Two examples of cylinder

pressure recorded during a knocking and a non-knocking combustion cycle are shown in Figure

1: the pressure oscillations due to knock are clearly detectable with a band-pass filter.
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Figure 1. Raw and band-filtered pressure traces and MAPO index for a knocking and a non-knocking cycle.

A Knock event is detected when the MAPO overcomes a threshold. A large value reduces the

knock detection sensitivity and recognizes as knocking ones only the cycles with large pressure

oscillations, while a small threshold increases the detection sensitivity, but could lead to an
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excessive responsiveness since more cycles are treated as knocking ones. For the experimental

test bench used in this work, a threshold value of 0.2 bar is found to be a good compromise.

The in-cylinder pressure detection algorithm is not a mandatory requirement for the effective

implementation of the knock controllers proposed in the following. Any other method capable

of detecting knock occurrence (not its intensity) can be alternatively used, e.g. [4], [25].

The static model witch provides the average knock rate for a constant spark timing is shown

in Figure 2. Given a desired knock rate, the static model provides an indication of the average

achievable spark timing. Although a proper controller design and tuning can advance the average

spark timing and increase the engine efficiency for a given knock rate, it is physically limited

by the characteristics of the engine.
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Figure 2. Average knock rate vs. fixed spark timing.

Knock events are binomially distributed regardless of the probability density of the knock

intensity metric [26]. The latter assumption is widely acknowledged and it is true provided

that the data are cycle-to-cycle uncorrelated. To prove that the assumption holds for the MAPO

index, the autocorrelation of the knock occurrence, detected by comparing the MAPO index with

a threshold, is shown in Figure 3. The analysis is performed on 200 cycles of data collected with

a fixed spark timing of 14 ◦bTDC. All the data are included in the 95% probability interval and

thus it is reasonable to assume that the knock occurrence behaves as a cycle-to-cycle independent

random process. Following the approach in [26] an engine simulator, based on a binomial
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Figure 3. Knock occurrence autocorrelation.

distribution of knock events is built: it will be used in Section V for testing and comparing

the knock control strategies.

III. UNCONVENTIONAL KNOCK CONTROL

The first proposed knock controller is based on the same principle of the conventional one: it

advances the spark timing during non-knocking cycles and retards it at each knock event. The

main novelty is the logarithmic advance law which allows to increase the average spark timing

and to lower its variance. For this reasons, the proposed strategy is called Unconventional.

A. Conventional Strategy

The conventional knock control strategy is implemented as in Equation (1)

Sc (j) =

Sc (j − 1)−Kret if knock,

Sc (j − 1) +Kadv otherwise,
(1)

where Sc (j) is the spark timing at cycle count j, Kret is the retarding quantity on knock events,

and Kadv is the advancing quantity during non-knocking cycles. Under the assumption of stable

operation (i.e., knock occurs deterministically at a fixed spark timing), the controller parameters

(i.e., Kret and Kadv) can be related to the target knock probability (Pref ) with the following

equation (see [26]):

Kadv =
Pref

1− Pref

Kret. (2)



7

While Pref is a design parameter related to the structural strength of the engine, the variable

Kret can be considered as a control parameter and determines the reactivity of the controller.

Large values of Kret allow for faster closed-loop transients but increase the variance and retard

the average of the spark timing at steady-state operation: therefore, Kret is normally manually

tuned to find a suitable compromise between these two aspects.

B. Unconventional Strategy

While the conventional strategy advances the spark timing during non knocking cycles at the

constant rate Kadv, the unconventional one uses a varying rate. The underlying idea is that,

once the spark timing is retarded of Kret, the occurrence of consecutive knock events is rather

improbable and thus the spark timing can be advanced faster. As the number of cycles from the

last knock occurrence approaches Nref = 100
Pref

the increase rate is reduced. Such behaviour is

easily implemented with a logarithmic function, as in the following equation:

Su (j) =

 Su (j − 1)−Kret if knock,

Su (jk) +Kln ln (c) otherwise,
(3)

where Kln is a tuning parameter, jk is the cycle count of the last knock event, Su (jk) is the

spark advance applied at the last knocking cycle, and c is the number of cycles since the last

knock event. The variable Kret here has the same function as for the conventional controller

and, under the assumption of a stable operation, is related to Kln and the desired knock rate.

Given Pref and Kret, the value of Kln is determined by the following equation:

Kln =
Kret

ln
(

1−Pref

Pref

) . (4)

Equation (4) ensures that the knocking spark timing is reached Nref cycles after the last knock

event, corresponding to the desired probability. Figure 4 shows a typical spark timing evolution

of the two controllers, assuming that knock events occur at Sk = 5 ◦bTDC. Both controllers

reach the knocking timing in Nref cycles, but the difference is in the shape used to advance the

spark timing, which eventually determines the average and the variance of the control action.

C. Deterministic analysis

Under the assumption of stable operation, (i.e., evolutions as shown in Figure 4) the advantages

of the unconventional controller can be computed analytically. The spark timing average and
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Figure 4. Unconventional vs. conventional controller evolution. Kret = 1.5◦, Pref = 1% and Nref = 100 cycles.

variance for the conventional controller are given by the following equations:

E [Sc]=Sk−Kret+
1

Nref

Nref−1∑
j=0

Sc (j) = Sk −
Kret

2
, (5)

VAR [Sc] =
1

Nref

Nref−1∑
0

(Sc (j)− E [Sc])
2 =

K2
ret

12
. (6)

Analogously, the average and variance for the unconventional controller are given in Equations

(7) and (8):

E [Su]=Sk−Kret+
1

Nref

Nref−1∑
0

Su (j)=Sk−
Kret

ln(Nref )
, (7)

VAR [Su]=
1

Nref

Nref−1∑
0

(Su (j)−E [Su])
2=

K2
ret

ln(Nref )
2 . (8)

As expected, higher values of Kret retards the average spark timing (i.e., reduces the engine

efficiency) and increases its variance, for both approaches. The advantages of the unconventional

controller are not evident since equations (7) and (8) depend on Nref . In particular, when

ln (Nref ) > 2 the unconventional controller outperforms the conventional one in terms of spark

timing average and when ln (Nref )
2 > 12 in terms of its variance: this latter situation occurs

for Nref bigger than 32 which means, Pref < 3%. Considering that the typical range for Pref

found in the scientific literature is 0.1% to 2%, the use of the unconventional controller rather

than the conventional is justified.
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Besides steady-state properties, the settling time to recover from a steady-state operation

deviation allows a dynamic comparison between the two approaches. The settling time required

by the conventional and the unconventional algorithm to reach the knocking spark Sk from a

retarded condition S(0) < Sk is given by Equations (9):

T ret
c =

1− Pref

Pref

· Sd

Kret

, T ret
u =

1− Pref

Pref


Sd

Kret

(9)

where Sd = Sk−S(0) > 0. The settling time turns to be non trivially dependent by the reference

probability, the controller parameter and the amplitude of the deviation. However, it can be clearly

seen that it grows exponentially for the unconventional controller case as the ratio Sd

Kret
increases;

for the conventional controller such growth is only linear.

When dealing with advanced spark initializations, the time needed to reach steady state is

equal (since both control strategies, (1) and (3), use the same retarding strategy) and is given

by the following:

T adv
c = T adv

u =

⌈
−Sd

Kret

⌉
, (10)

where Sd < 0. Equation (10) allows to evidence that, for the usual values of Pref (such that
1−Pref

Pref
> 1), the recovery time from an advanced condition is shorter than from a retarded one:

therefore, both strategies behaves more reactively in response to dangerous than to low-efficiency

conditions.

IV. ADAPTIVE KNOCK CONTROL

The two controllers in Section III achieve the desired target probability Pref and feature a

design degree of freedom, namely the value of the parameter Kret. Large values of Kret would

be preferable for conditions distant from the target one, since they yield faster recovery transients

(see e.g. (9)), whereas small values of Kret would result in a lower steady-state variance when

the probability target is met.

The idea of the adaptive strategy here proposed is to estimate the difference between the

actual and the desired stochastic properties of knock occurrences and to change the Kret value

accordingly. Differently from other studies, e.g. [20], that develop “fully” stochastic controllers,

here the stochastic information of knock events is used to adapt the parameters of deterministic

controllers rather than to directly compute the control action.
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The adaptive controller scheme is shown in Figure 5 and applies equally to the conventional

and the unconventional controller. In the proposed approach, the likelihood ratio Lr is used as

Engine

Conventional

or

Unconventional

Pref

S Knock

KretLikelihood

Ratio

N

measurement

N

Kret adaptation

Figure 5. Adaptive knock control scheme

an indicator of the discrepancy between the expected and the measured stochastic properties of

knock. It is computed according to the following expression:

Lr =
(Pref )

Nk (1− Pref )
N−Nk

(Pmeas)
Nk (1− Pmeas)

N−Nk
, (11)

where Nk is a designed parameter which defines the number of past knock events considered,

N is the number of past cycles in which Nk events occurred, Pmeas = Nk/N is the sampled

and Pref is the target probability. The likelihood ratio compares the measured probability of

obtaining Nk events in N samples with those of a binomial stochastic process with parameter

Pref : for instance given a desired probability of 1%, the likelihood ratio is greatest when the

actual distance between the last two knock events (Nk = 1) is equal to 100 cycles, or the last

three events (Nk = 2) occur in 200 cycles. As such, Nk plays the role of filtering parameter

and defines the memory of the update mechanism: higher values imply a larger time window

considered for the computation of N and Pmeas. In the simulations and experiments that follow,

a fixed value of Nk = 1 is used; larger values would reduce the variability of the parameter

adaptation at the cost of a longer settling time.

The adaptation strategy increases Kret when the stochastic properties of knock occurrences

are different from those desired (i.e. when Lr < 1), increasing the convergence speed of the

deterministic controllers to the target values. As the desired knock rate is met (i.e. when Lr → 1)

Kret is driven smaller values so to obtain the best steady-state properties. To avoid extreme values

of the Kret it is saturated between a maximum (Kmax
ret ) and a minimum (Kmin

ret ) value. Equation

(12) implements the parameter adaptation:

Kret = Kmin
ret +

(
Kmax

ret −Kmin
ret

)
(1− Lr) , (12)
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By definition, the likelihood ratio (11) is updated only when a knock event is measured; thus the

adaptation of Kret occurs at lower speed than the cycle-by-cycle spark timing update. This

different time scale explains the use of the term adaptive to address the update parameter

mechanism (12). It should be remarked that it is not necessary to update the value of Lr during

non knocking cycles, since the spark advance increase during non knocking cycles, which is a

feature of the deterministic controllers, guarantees that a knock event is eventually triggered. The

same could not be done for the benchmark controller which relies on Lr for the computation of

the spark timing.

The adaptive strategies have three tuning parameters. Pref and Kmax
ret are equivalent to Pref

and Kret of the non-adaptive strategies. The value of Kmin
ret modifies how the adaptation strategy

works: when Kmin
ret = Kmax

ret no adaptation is performed whereas Kmin
ret = 0 is the minimum

tuning value, that keeps the spark constant when the reference probability is met. An intermediate

value of Kmin
ret should be chosen based on the minimum controller reaction speed desired.

V. SIMULATION RESULTS

In this section the proposed controllers are compared with the conventional strategy and the

stochastic benchmark controller discussed in [20] which updates the control variable propor-

tionally to the error between the actual likelihood ratio and a target threshold Lr,th. Unlike the

conventional strategy, the variables Kadv and Kret are not related to the reference probability,

which makes the tuning process more difficult. The Algorithm 3 version of the strategy is here

used which improves the transient response after long periods of operation at the desired target.

The comparison is performed using the stochastic knock simulator [26]. Steady-state perfor-

mances are considered in Section V-A and a specific analysis of the adaptation strategy tuning

is discussed in Section V-B.

A. Steady-state operation

The reference probability for the steady-state comparison is set at 1%, consistent with appli-

cation realistic values; the parameters of all the tested controllers are summarized in Table I.

It should be noticed that in order to equate the maximum reaction speed for the adaptive and

non-adaptive strategies Kmax
ret and Kret have the same value. The values of Kret and Kadv of the

benchmark controller are tuned to obtain an average knock rate of approximately 1%, while the

threshold Lr,th is set according to the reference paper suggestions.
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Table I
CONTROLLER PARAMETERS FOR THE STEADY-STATE COMPARISON

conv unconv ad conv ad unconv bench
Pref 1% 1.5% 1% 1.5% 1%
Kret 1.5◦ 1.5◦ online online 0.5◦

Kmax
ret - - 1.5◦ 1.5◦ -

Kmin
ret - - 0.1◦ 0.1◦ -

Kadv 0.015 - online - 1.25◦

Kln - 0.3264 - online -
Lr,th - - - - 0.4

The first cycles of a simulation are shown in Figure 6 where each of the discussed controller is

compared with the conventional one. The non-adaptive controllers have the most straightforward

behaviour: they both retard the timing on knock events and advance it otherwise. The conven-

tional controller advances the timing linearly, while the unconventional controller advances it

logarithmically. The benchmark controller - being a fully stochastic controller - does not react

at each cycle and it changes the spark timing only when the likelihood ratio overcomes the

threshold. The adaptive strategies retard the timing depending on the discrepancy between the

expected and the measured cycles between two consecutive knock events: this is responsible for

the different amplitude of the retarding action at each knock event.

The controllers were simulated for 25 thousand cycles and the average results are shown in

Table II. The proposed controllers outperform both the conventional and the benchmark ones.

While the improvement in terms of average spark timing (i.e., engine efficiency) is limited by

the engine characteristics, the improvement in terms of spark timing variability is considerable.

Considering this aspect, the adaptive unconventional controller shows the best performance.

Table II
SIMULATION RESULTS AT STEADY-STATE OPERATION

conv unconv ad conv ad unconv bench
E [P ] (%) 1.00 0.99 1.04 1.01 1.04
E [S] (◦) 8.35 8.48 8.64 8.56 8.30

V AR [S]
(◦2) 0.71 0.30 0.30 0.13 0.37

An important aspect that must be highlighted is the discrepancy between the desired knock

rate and the resulting one (see Figure 7). Within this perspective, the conventional controllers

show the best matching whereas the unconventional and the benchmark ones require an appro-

priate parameter tuning to match the desired rate. However, while the unconventional strategies
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Figure 6. Simulation example at steady-state operation. In each subplot, the conventional controller (dashed line) is compared with
the benchmark (top left), the unconventional (top right), the adaptive conventional (bottom left) and the adaptive unconventional
controller (bottom right).

require only the tuning of Pref , the parameters of the benchmark controller are coupled, which

complicates their tuning.

0 0.5 1 1.5 2 2.5 3
P

ref
 [%]

0

1

2

3

P
 [%

]

conventional
unconventional
adaptive conventional
adaptive unconventional
benchmark

Figure 7. Actual knock rate (P ) vs. reference probability (Pref ). The other parameters are equal to those listed in Table I.
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B. Stochastic adaptation tuning

This section is devoted to the analysis of the tuning of the adaptive strategies; in fact Kmax
ret

and Kmin
ret determine the maximum and the minimum reactivity of the adaptive controllers. The

objective is thus to explore the possible trade-offs between the controller speed and the spark

timing variability. In order to do so, the adaptive controllers are compared to the respective non-

adaptive versions for a fixed value of Pref and different values of Kret, Kmax
ret and Kmin

ret ; however,

Kret and Kmax
ret are always intentionally chosen to be equal in order to have the maximum speed

of the adaptive strategies equal to the speed of the non-adaptive ones.

Figure 8 shows the sensitivity results w.r.t. Kret and Kmax
ret , obtained by averaging 1000

simulations. The notable effect is that by changing Kret and Kmax
ret it is possible to achieve settling

times that are as short as those of the conventional controllers while reducing the variability of

the spark timing by more than 50%.
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ret (the other parameters are equal to those listed in Table I).
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The action of the adaptive strategy depends also on the value of Kmin
ret , which determines

the amplitude of the adaptation (i.e., the variation range of Kret). The averaged results of

the sensitivity w.r.t. this parameter are shown in Figure 9. As expected, when the value of

Kmin
ret approaches Kmax

ret , the effect of the adaptive rule vanishes and the adaptive controllers

behave similarly to their non-adaptive counterparts. Low values of Kmin
ret yield better stochastic

performances at the cost of an increase of the settling time in response to a wrong initialization.
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Figure 9. Sensitivity to Kmin
ret (the other parameters are equal to those listed in Table I).

VI. EXPERIMENTAL RESULTS

The performances of the controllers are experimentally compared at a test bench composed of

an electric brake and a four-stroke three-cylinders SI engine. The engine is a 499.6 cc (82mm

bore and 10.1:1 compression ratio) turbocharged with variable valve camshaft and direct gasoline
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injection. Injection timing was set at 270 ◦bTDC and intake valve closing was set at 180 ◦bTDC.

The air-to-fuel ratio is measured by a sensor at the exhaust and is regulated at stoichiometric

conditions by closed-loop-controlling the amount of fuel injected: this allows a validation of the

proposed control strategies in a realistic situation, when also other closed-loop controllers are

active. The air mass flow is measured by a hot-film anemometer and controlled by a waste-gate

valve located before the turbocharger inlet.

All the tests are performed at a speed of 1500 rpm, an air mass flow equal to 667 mg/stroke,

a coolant temperature of 85 ◦C, and a rail pressure of 200 bar.

Steady-state and transitory performances have been analysed; each controller features the same

tuning parameters as those used for the simulations.

A. Steady-state operation

The average results of the steady-state experiments (25 thousand cycles) are summarized in

Table III and confirm those obtained in the simulations: the adaptive strategies present the best

behaviour with the most advanced timing and the lowest variance. Besides the relative strategy

comparison, it is worth noticing how the absolute performances of the controllers are close the

simulation ones.

Table III
EXPERIMENTAL RESULTS AT STEADY-STATE OPERATION

conv unconv ad conv ad unconv bench
E [P ] (%) 1.00 1.08 1.01 1.07 1.04
E [S] (◦) 8.22 8.27 8.51 8.47 8.13

V AR [S]
(◦2) 0.71 0.29 0.40 0.11 0.44

B. Transitory behaviour

In the experimental analysis of the transitory behaviour of the controllers, the settling time

when starting from a wrong spark advance initialization is evaluated. In the present context,

such time is referred as the number of cycles required to reach steady-state conditions. Since

the target knock rate is 1%, according to the stationary engine relation (Figure 2), the expected

average spark timing at the 1% rate is 8.53◦bTDC and steady-state conditions are considered to

be reached when the spark advance reaches such value for the first time. Since all controllers

advance and retard the spark timing differently, both scenarios are considered and the spark

advance is initialized 2◦ away from the expected steady-state value.
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Figure 10 and 11 show examples of the controller responses starting from the two conditions.

Considering the stochastic nature of knock, the results of the settling time may vary for one
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Figure 10. Evolution of the spark timing starting from advanced condition. In each subplot the conventional controller (dashed
line) is compared with the benchmark (top left), the unconventional (top right), the adaptive conventional (bottom left), and the
adaptive unconventional controllers (bottom right).

experiment to another. Thus, in order to better evaluate the differences among the controllers, 10

experiments have been performed for both starting conditions and the average results collected

in Table IV.

Among the proposed controllers the adaptive conventional one proves to be the fastest: while

its settling times are longer than those of the conventional controller, it outperforms the stochastic

benchmark controller.

The unconventional controller presents a twofold behaviour: its settling time when starting

from advanced conditions is low, almost as low as that of the conventional controller and it

is slow when starting from a retarded condition. The adaptive unconventional is the slowest

controller in both conditions. Therefore, the unconventional controllers are most suitable for

steady-state conditions, while the adaptive conventional controller show an excellent trade-off

between variability and speed.
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Figure 11. Evolution of the spark timing starting from retarded condition. In each subplot the conventional controller (dashed
line) is compared with the benchmark (top left), the unconventional (top right), the adaptive conventional (bottom left), and the
adaptive unconventional controllers (bottom right).

Finally, it is also worth noting that the experimental results match those of the deterministic

analysis in Section III.

Table IV
RESULTS OF SETTLING TIME ANALYSIS (10 EXPERIMENTS)

Strategy Advanced start Retarded start
Conventional 53 cycles 162 cycles
Unconventional 102 cycles 523 cycles
Adaptive conventional 106 cycles 287 cycles
Adaptive unconventional 181 cycles 907 cycles
Benchmark 249 cycles 328 cycles

VII. CONCLUSION

In this paper the knock control problem has been addressed introducing three innovative

controllers. The unconventional controller uses a logarithmic shape to increase the spark timing;

the adaptive conventional and unconventional controllers adapt their parameters according to the

likelihood ratio, hence combining the advantages of deterministic and stochastic approaches to
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the knock control. Beside a well-known conventional strategy, the proposed controller have been

compared with a stochastic state-of-the-art solution.

Experimental results at the test bench show how the logarithmic advance of the spark timing

allows to get the lowest variance at steady-state. However, when the transient response is

considered, the conventional controller still shows the best results. Therefore, the adaptive

conventional strategy should be considered as it features an excellent compromise between

response time and steady-state behaviour.

Aside from their good performance, compared with the benchmark stochastic controller all

the proposed solutions require fewer parameters to be defined and a minor tuning effort. In

particular, it must be remarked how the simulation analysis using the stochastic simulator allow

a realistic design of the proposed strategies, which yield to consistent results at the test bench

with no additional empirical tuning effort.
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