Objectives of Work Package

WP Leaders: Dr. Johan Hult Dr. Fridolin Unfug

- Further improve fuel flexibility of marine engines
- Increase understanding of injection, ignition, combustion and emissions formation for novel and mixed fuels → efficient operation
- Develop experimental and numerical tools required to exploit alternative fuels in marine engines:
 - Experimental facilities with optical access
 - Development of numerical tools
 - Development of novel control strategies

WP2: Multi-fuel combustion

Progress update and results

2.1 Fuel-flexible test facility

- Concept evaluation
- Design specifications \rightarrow finished
- Building specifications \rightarrow finished •
- Detailed design work, purchasing & construction

 \rightarrow finished

- \rightarrow reduced

pace

Proposed design for fuel-flexible test facility

- Hydraulic drive
 Expansion
- Ø 500 mm
- Optical access
- P_{max}~200 bar

WP2: Multi-fuel combustion

Progress update and results

2.2 Injection and ignition characterization

- Ethane operation (2×HS)
- Flame volume mapping NG (3×H) \rightarrow Oct-Nov
- High-speed Schlieren imaging \rightarrow prepared
- Seeding of lubrication oil \rightarrow ongoing
- Improved engine optical access \rightarrow ongoing

2.3 Numerical studies of fuel and ignition

- Improved kinetic model for NG \rightarrow finished Model extended to propane \rightarrow finished
- Propane oxidation experiments \rightarrow finished Tabulated chemistry for CFD \rightarrow tested

 \rightarrow finished

High-speed Schlieren

· CH

camera test

 $C_7 H_{16}$

Progress update and results

2.4 In-cylinder mixture formation

- Lateral optical access design
- Testing rig assembly
- Design further optical access
- Validation measurement technique
- 3D CFD mixture formation

- \rightarrow finished
- \rightarrow ongoing
- \rightarrow ongoing
- \rightarrow ongoing
- \rightarrow started

Light-sheet test

Progress update and results

2.5 Fuel-specific engine-control strategies

- First basic engine tests \rightarrow finished 10/2015
- Single cylinder tests using advanced injection timings ightarrow 50% finished
- Preparation of spray chamber measurements for investigation of different fuels
 → finished
- Preparation of CFD model \rightarrow finished

2.6 Low temperature NO_{X} formation

- Conversion of NO to NO2
- First calculations show promising results
- Thermodynamic conditions understood
- Modeling in CFD --> ongoing

Sensitivity Analysis of NO2 Formation Regarding Mixture Temperature and Unburned Fuel

Future work (2.1-2.3)

- Fuel-flexible test facility: design at reduced pace
- Optical engine tests: *multi-camera flame mapping*

- high-speed Schlieren/shadowgraph

- LPG

- Design compact fuel-jet visualization units
- Lubrication oil seeding for imaging
- CFD: implementation of chemical mechanisms
- Detailed chemical kinetic model extended to butane (LPG)
- Experimental validation for butane
- Reduced mechanisms for ignition scenarios

Future work (2.4-2.6)

- Build up and test of 1st optic release of the optical engine
- Design and Procurement of 2nd optic release of the optical engine
- 1st test of optical measurement techniques at the optical engine
- Further improvement of optical measurement techniques
- Single cylinder engine tests with different fuels
- Spray Chamber measurements for investigation of fuels with different viscosity
- Validation of NO/NO₂ model with single cylinder engine data

