Objectives of Work Package

WP Leaders: Dr. Johan Hult Christian Kunkel

- Further improve fuel flexibility of marine engines
- Increase understanding of injection, ignition, combustion and emissions formation for novel and mixed fuels → efficient operation
- Develop experimental and numerical tools required to exploit alternative fuels in marine engines:
 - Experimental facilities with optical access
 - Development of numerical tools
 - Development of novel control strategies

Main results achieved during 2nd year

Tri-camera flame mapping (dual-fuel CFD validation)

10 kHz

CAD ATDC: 1.82

WP2: Multi-fuel combustion

HERCULES-2

Main results achieved during 2nd year

- Lab tests of high-speed Schlieren set-up
- Lab tests of lubrication seeding and visualisation
- A detailed chemical kinetic model for LPG (propane/butane)
- Oxidation properties of propane&butane characterized experimentally at 100 bar
- CFD has focused on using detailed chemistry for LNG (from DTU). To boost progress new partner groups will assist with:
 - Turbulence/chemistry interactions & cell clustering for detailed chemistry (Lund)
 - Charge preparation & tabulated chemistry (Milano)

Propane experiments and kinetic model

CFD from tri-camera views

ERCULES-2

Future Work

Optical engine tests: - high-speed Schlieren/shadowgraph

- LPG

- lubrication visualisation

- Finish design of fuel-jet visualization units
- Data processing and CFD validation using Tri-camera data
 - will form CFD validation cases for partners
- Evaluate the potential of detailed or tabulated chemistry approaches for different fuels. Both making use of chemical mechanisms developed within the project.

Progress update

2.4 In-cylinder mixture formation

- Installation of lateral optical access on SCE \rightarrow finished
- Reworking of above mentioned set-up*
- Reworked set-up tested up to 100% power \rightarrow successfully \checkmark
- First optical measurement w lateral access \rightarrow finished
- Design further optical access
- **3D CFD mixture formation** Camera

→ successfully

- → ongoing
- → ongoing

* damaged optical lense due to contact with lens-holder

first optical measurement (flame-luminescence)

Progress update

2.5 Fuel-specific engine-control strategies

- SCE testing w. advanced inj.-timings (fuel1)
- SCE-testing w. advanced inj.-timings (fuel2)

2.6 Low temperature NO_x formation

- report finished
- high pressure FTIR-device installed
- optimization of combustion model
- optimization of emission-modeling

Sensitivity Analysis of NO2 Formation Regarding Mixture Temperature and Unburned Fuel

Future work

- Calculation and finalization of 2nd optic release of the optical engine
- Optical investigations with 1st optic release on Single Cylinder Engine
- Further improvement of optical measurement techniques
- Single Cylinder Engine (SCE) tests with fuel 2
- Validation of CFD and NO/NO₂ model with SCE-data

