Objectives / Expected Results

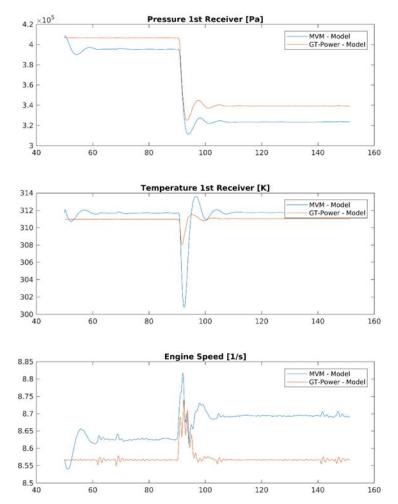
Cut operating, maintenance and deployment costs

 Develop systems, methods an processes for improved engine lifetime performance

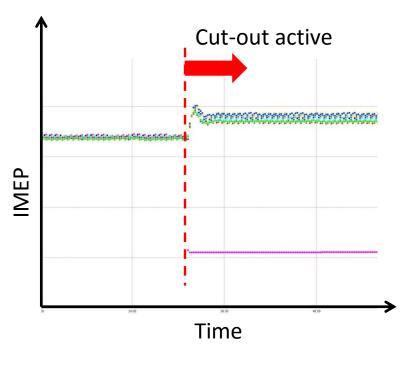
Reduction of emission & increased efficiency at part load

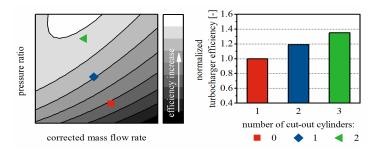
- Cylinder cut-out
- NOx: expanding operation range emission reduction technologies
- Particle: novel lubrication injection system

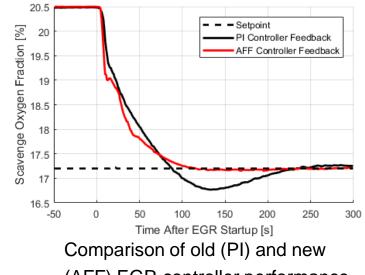
Enhance dynamic performance

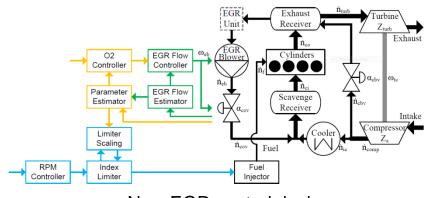

• Model-based control

WP Leader: Dr. M. Moser, T. Moeller


October 2017

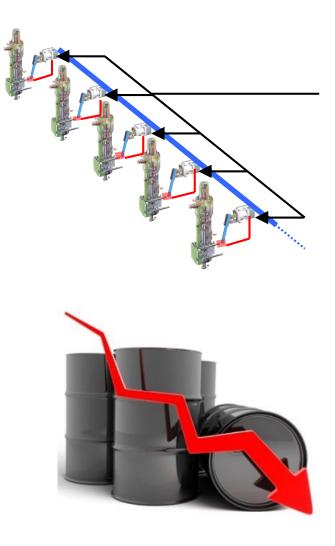

- Development of physical-based models for Model-based engine control
- Combustion model developed and implemented
- Feasibility study concerning optimal control done
- Volumetric efficiency of the engine (volumetric pump) modeled
- Comparison of the developed model with the GT-Suite results
- Model build up in Matlab/Simulink and C++
- Example for optimal control proposed
- Next steps are tuning MPC and LQR controller


- SW-function for low load operation with cylinder cut out (static, dynamic, different amount of cylinders) was developed
- First SW validation with the help of MiLsimulations done
- SW validation on the HiL test bench have been done
- Test on the engine will be performed on November / December
- Publication of paper "Investigation of the Cylinder Cut-Out for Medium Speed Dual Fuel Engines" on the Heavy-Duty-, On- und Off-Highway-Motoren congress



- A new EGR controller has been implemented as part of MDT's Emission Reduction Control System software package
- The new EGR controller was tested as part of an engine shop test
- The shop test showed improved transient performance, when compared to the previous controller
- Vessel maneuvering patterns analyzed (ongoing).
- New EGR controller implemented
- New EGR controller tested in shop test
- Next steps will be finish analysis of vessel maneuvering patterns
- Test new EGR controller on vessel during maneuvering

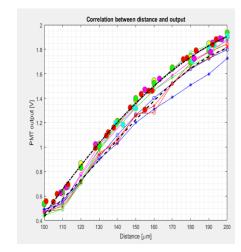
(AFF) EGR controller performance.



New EGR control design.

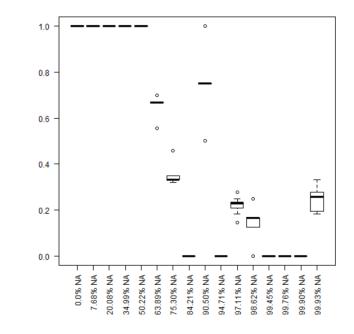
- Development of a retrofit solution for continuous engine performance optimization for mechanical controlled engines
- Electronically controlled actuator for fuel injection
- Prototype sample designed, produced and available
- Prototype sample tested on the test bed
- Due to drop in fuel oil price no field test carrier could be found
- No further prototype samples will be produced

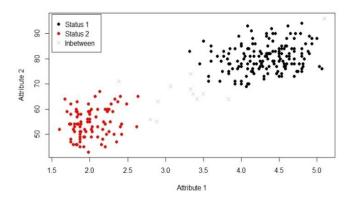
WP 6.5 further development stopped



- New numerical techniques have been developed for keeping track of accumulated lubricant in front of the piston ring. The method has been accepted and published in a high ranking journal
- Experiments made for measuring and computing the friction force and lubricant transport across the piston ring
- Validation of previous work with creating numerical models to simulate the lubricant behavior
- Correlations between distances/lubricant film thicknesses and outputs are made for calibration the system in order to convert a given output to a real distance for later experiments

Friction force as a function of the crankshaft position for an engine velocity of 900 RPM.


Correlations between distances/lubricant film thicknesses



Remote monitoring & software distribution

- Development of a stream based sub space search method witch allows to analyze data streams
- Data clustering based on DBSCAN algorithm into well defined states (Mahalnanobis - distance)
- Investigation of "Concept Drifts" and compression quality
- Investigation of new compression algorithm which takes dependencies of different data values into account will be performed
- Further improvement of subspace-search method will be done

Methode\NA's	7.68%	20.08%	34.99%	50.22%	63.89%	75.30%	84.21%	90.50%
Interpolation	2.97	4.11	4.65	3.52	36.24	41.25	41.25	40.80
LBw	3.48	3.08	4.30	10.20	40.48	40.30	40.89	40.89
<u>knn</u>	4.95	6.94	14.79	12.73	30.19	39.71	41.13	39.90
Random Forest	4.24	8.21	12.61	21.61	31.95	40.41	40.41	39.45

October 2017