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Abstract: The introduction of modern aftertreatment systems in marine diesel engines call for
accurate prediction of exhaust gas temperature, since it significantly affects the performance of the
aftertreatment system. The scavenging process establishes the initial conditions for combustion,
directly affecting exhaust gas temperature, fuel economy, and emissions. In this paper, a semi-empirical
zero-dimensional three zone scavenging model applicable to two-stroke uniflow scavenged diesel
engines is updated using the results of CFD (computational fluid dynamics) simulations. In this 0-D
model, the engine cylinders are divided in three zones (thermodynamic control volumes) namely, the
pure air zone, mixing zone, and pure exhaust gas zone. The entrainment of air and exhaust gas in the
mixing zone is specified by time varying mixing coefficients. The mixing coefficients were updated
using results from CFD simulations based on the geometry of a modern 50 cm bore large two-stroke
marine diesel engine. This increased the model’s accuracy by taking into account 2-D fluid dynamics
phenomena in the cylinder ports and exhaust valve. Thus, the effect of engine load, inlet port swirl
angle and partial covering of inlet ports on engine scavenging were investigated. The three-zone
model was then updated and the findings of CFD simulations were reflected accordingly in the
updated mixing coefficients of the scavenging model.
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1. Introduction

During the scavenging process, the burnt gas inside the engine cylinders is expelled and new fresh
air is charged. The scavenging process establishes the initial conditions of the combustion process,
hence is affecting engine fuel economy and emissions. Commercial vessels, such as tankers, bulk
carriers, and containerships are, in most cases, propelled by large two-stroke uniflow scavenged diesel
engines. Better propulsion efficiency dictates the matching of the engine to a slow turning, large
diameter propeller. In order to achieve low engine revolutions while maintaining a certain mean piston
speed the bore to stroke ratio of marine diesel engines was increased. Due to their long stroke, loop
or cross flow scavenging was unsuitable for these engines and the uniflow scavenging system was
introduced. The air enters the engine cylinders through ports located at the lower part of the liner,
when the piston is near the bottom dead center (BDC). After exhaust blowdown the incoming air
expels the exhaust gas through the exhaust valve located on the cylinder head. The driving force of
the scavenging process is the pressure difference between the scavenge receiver and the exhaust gas
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receiver. Inlet ports are usually angled, providing the incoming air with swirl to improve purging of
the cylinder. A cross sectional view of a typical large uniflow scavenged marine diesel engine is shown
in Figure 1.
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Figure 1. Cross sectional view of a uniflow scavenged marine diesel engine [1].

Before CFD models became widely available the scavenging process was investigated in detail by
experiments in scaled down engine models. Such works include visualization, pitot tube measurements,
and hot wire experiments which can be found in [2–4]. The effect of inlet port angle on scavenging
efficiency was investigated in [5,6]. A review of the various models of the scavenging process can be
found in [7,8].

Over the past two decades computational cost has declined leading to increased popularity of CFD
modeling. Sigurdson et al., performed a CFD analysis, on a 12-degree sector, including one scavenge port,
of the MAN B&W 4T50 test engine (MAN B&W, Copenhagen, Denmark) [9]. Lamas et al. [10] investigated
the scavenging process in the MAN B&W 7S50-MC engine (MAN B&W, Copenhagen, Denmark) through
CFD simulations. Andersen et al. performed CFD investigation on full scale engines, examining the effect
of engine load [11] and variation of in-cylinder swirl [12] on scavenging efficiency. The effect of inlet port
depth on the swirling flow and scavenging process was investigated by [13]. The effect of piston covering
half of the inlet ports on the in-cylinder swirling flow was examined by [14].

As the bore to stroke ratio of marine engines increased, zonal models became preferable for
accurate engine performance prediction. A three-zone scavenging submodel was originally introduced
in [15]. Due to the introduction of aftertreatment technologies in marine diesel engines such as selective
catalytic reduction (SCR) systems, accurate exhaust gas temperature prediction became more essential.
Hence, the original three-zone scavenging model was updated using results from CFD simulations.
The updated model can be used in conjunction with a zero-dimensional engine and SCR model, in
order to investigate the transient response of the engine-SCR system.

2. The Three-Zone Scavenging Model

In the original model [15], the cylinder is divided in three zones namely, a pure air zone, a pure
exhaust gas zone, and a mixing zone as presented in Figure 2.

Within each zone the temperature is assumed uniform but differs in the three zones. The pressure
throughout the cylinder is uniform at each computational step. Every zone is treated as an open system
where the first law of thermodynamics may be applied.
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of this three-zone model is that the mass exchange between the zones takes place only in two ways:
scavenge air enters the mixing zone and burnt gas enters the mixing zone. Hence the rate of change of
the mas for each zone is defined as:

.
mI =

.
minp −

.
mI−II (2)

.
mII =

.
mI−II +

.
mIII−II (3)

.
mIII = −

.
mIII−II −

.
mexv (4)

where
.

mI−II is the air mass flow rate from zone I to zone II,
.

minp is the air mass flow through inlet
ports,

.
mIII−II is the mass flow rate from zone III to zone II and

.
mexv is the mass flow rate through the

exhaust valve. The entrainment of air and exhaust gas in the mixing zone is specified by time varying
mixing coefficients. The air penetration coefficient is defined as:

µa =

.
mI−II

.
minp

(5)

And the exhaust gas penetration coefficient is defined as:

µg =

.
mIII−II

.
minp

. (6)

where
.

mIII−II is the air mass flow rate from zone III to zone II. The postulated variation of the air
penetration coefficient is shown in Figure 3.
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Figure 2. Schematic representation of the three-zone model on a uniflow scavenged engine.
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Initially, µα = 1 since the air entering the engine cylinders is rapidly mixed with exhaust gases.
As the exhaust gas in the lower part of the cylinder is displaced, the value of the coefficient declines
exponentially, as Equation (7) shows.

µα = e−κτ(λτ+ 1) (7)

where κ is a model constant and τ is normalized scavenging time defined as:

τ =
ϕ−ϕEBF

ϕIPC −ϕEBF
(8)

where ϕ is crank angle, ϕEBF is the crank angle at end of backflow and ϕIPC is the crank angle at inlet
port closing. The assumed variation of µg is divided in two phases and is also presented in Figure 3.
Initially, µg = 0 and increases parabollicaly, resembling the entrainment of ambient fluid into jets. In
the second mixing phase, the gas penetration coefficient decreases exponentially. The mathematical
expression of µg is shown in Equation (9).

µg =

 2
√
τ, 0 < τ < τg

∗

e−k(τ2)
(
ξτ2 + µg

(
τg
∗
))

, 0 < τ2 < 1
(9)

where ξ and k are model parameters, τg
∗ is the time when the second mixing phase begins and τ2 is

normalized scavenging time of the second mixing phase.

3. Scope of Work

In this paper, the three-zone scavenging model, originally presented in [15] and applicable to
two-stroke uniflow scavenged marine diesel engines is updated. The model has been used for many
years, in conjunction with a control volume, zero-dimensional engine simulation code, MOTHER
(MOtor THERmodynamics) (see Chapter 3). A reliable scavenging model is essential for accurate
exhaust gas temperature prediction in engine application. This has become even more important due
to the recent applications of DeNOx systems such as SCR [16], exhaust gas recirculation (EGR) [17],
and WaCoReG system [18].

Available data concerning the scavenging process of two-stroke engines are scarce compared to
four-stroke engines due to the large cost associated with large engine testing and the limited number
of test facilities for large engines. To update the original zero-dimensional scavenging model, results
from a CFD simulation of the scavenging process were used as baseline. The engine geometry used for
this study is from a MAN 50 cm bore size two-stroke marine engine. The specifications of the engine
are presented in Table 1.

Table 1. Engine specifications.

Engine Model MAN B&W 6S50ME

Bore 500 mm
Stroke 2000 mm
No. of Cylinders 6 -
PMCR 7620 kW
NMCR 115 RPM
Scavenging Uniflow
Ports per cylinder 30

CFD results were produced for four steady state load points along a propeller curve namely 25%,
50%, 75%, and 100%, for two different cases. In the first case inlet ports were fully uncovered by the
piston and port angle varied from 0◦ to 30◦ by 10◦ intervals. In the second case port angle was fixed at
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20◦ and a 5% and 10% covering of the inlet port area by the piston at BDC was investigated. Then, the
mixing coefficients of the three-zone model were revised using the results from the CFD simulations.

4. The Zero-Dimensional Engine Simulation Code

The scavenging model under consideration, is integrated in the NTUA in-house thermodynamic
engine prediction code MOTHER. The code is based on the control volume principle. A number
of basic engineering elements such as flow receivers (cylinders, plenums), flow controllers (valves,
compressors, turbines), and mechanical elements (shafts, gearboxes, clutches and shaft loads) are
available. A turbocharged engine can be modelled as several flow receiver elements interconnected
by flow controller elements. Flow receivers are treated as open thermodynamic systems and
the work, heat and mass transfer, which take place through their boundaries, are calculated by
applying the conservation equations in appropriate form to each control volume. The resulting set
of differential equations are numerically solved step-by-step for all volumes. MOTHER includes
a variety of submodels for the simulation of engine processes such as combustion, heat transfer,
friction, and scavenging. The MOTHER code has been used for many years in engine performance
simulations [19–22].

5. Implementation of the CFD Model

To update the mixing coefficients of the original three-zone model results from a more detailed
2D CFD model were used. Only the scavenging process (not the combustion) was simulated.
The simulation is carried out between 76–286 CA degrees, for one typical cylinder. The starting point
of the simulation (76 crank angle degrees (CAD)) is well before the uncovering of inlet ports by the
piston which takes place at 135 CAD. This was done in order to include the blowdown period in the
simulation and be able to validate the CFD model against available pressure diagrams. Convective heat
transfer in the cooled upper part of the cylinder and the cylinder head is modeled with the assumption
of a constant wall temperature. Piston and lower cylinder liner part cooling was not taken into account.

The turbulent flow was simulated by the RANS (Reynolds averaged Navier Stokes) equations [23].
Gas density was calculated using the ideal gas equation. The turbulent viscosity was modeled by
the RNG k-ε model [24]. The case is solved in Fluent software as 2-D, axisymmetric with swirl.
The bending of the exhaust pipe to enter the receiver is not taken into account and inlet ports are
modeled as a continuous opening in the cylinder wall.

Mesh generation was carried out in ICEM CFD software (v14.5) [25] (structured mesh). Only the
cylinder, intake ports, and exhaust duct were meshed. Quad elements were employed in the mesh
generation. The mesh movement was imposed to the valve and piston surfaces by means of the
“in-cylinder” dynamic mesh facility existing in Fluent software [26]. Turbulent heat transport was
modeled using Reynolds analogy. Gas components were computed by a species transport model.
The number of elements varied from about 17,000 at the starting point of the simulation (76 degrees
ATDC, about mid-stroke) to 30,000 at bottom dead center. Figure 4 shows a cross-section of the mesh
at 76 CA degree and 180 CA degree.
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5.1. Numerical Procedure

The PISO (Pressure Implicit with Splitting of Operators) algorithm was chosen for pressure-velocity
coupling [26]. A second order scheme was selected to discretize the continuity, momentum, energy
and mass fraction equations. The time derivatives were discretized through a first order fully implicit
scheme with a constant time step corresponding to 0.1 degrees crank angle.

5.2. Initial and Boundary Conditions—Validation

The flow through the inlet ports was assumed fully axisymmetric, with a radial and a tangential
component (swirl). A pressure boundary condition was employed at engine inlet. A turbulence
intensity of 5% was selected. The inlet air temperature and CO2 concentration were set at 313 K and
0% respectively. A pressure boundary condition was employed at engine outlet. Initial conditions for
the gas in the cylinder (76◦ CA) are shown in Table 2. They were produced using the zero-dimensional,
engine performance prediction code MOTHER [19]. The engine under consideration was modelled
under steady conditions using the MOTHER software and validated against available measured data.
After submodel calibration, the accuracy of MOTHER calculations against measured data is better
than 3% over the whole operating range of an engine and it has been validated with over 50 engine
types [27–29].

Table 2. Initial conditions for the CFD model.

Engine Load 100% 75% 50% 25%

N [RPM] 115.3 105 91.5 73
pcyl at 76◦ CA [bar] 14.8 11.7 8.81 5.6
Tcyl at 76◦ CA [K] 1239 1186 1163 1020
pscav [bar] 3.90 3.15 2.20 1.48
pexh [bar] 3.80 3.08 2.15 1.45
CO2 mass fraction 0.133 0.129 0.129 0.115
H2O mass fraction 0.049 0.0475 0.0475 0.0423
Air mass fraction 0.358 0.376 0.376 0.444
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The comparison of engine indicator diagrams with the average pressure computed by the CFD
model is a good overall check of the CFD model’s accuracy. In this study the CFD computed pressure
diagram compares well with the validated 0-D model, for the engine cycle part of the CFD computation
(76–286 degrees CA) for all four operation points (25–100% load, along the propeller curve). The flow
through the cylinder is driven by a pressure difference between the scavenge receiver and the exhaust
receiver, known as the scavenging gradient or ∆p across engine. Higher dimension CFD models with
advanced turbulence submodels may require a certain degree of correction of scavenging gradient
by modification of the mass flow-rate [30]. In the present case the exhaust receiver pressure as well
as the inlet pressure are given as boundary conditions and thus the mass flow-rate is computed.
Figure 5 shows the effect of the scavenging gradient on some important scavenging parameters, namely,
trapping efficiency (ηtr), charging efficiency (ηch), scavenging efficiency (ηsc), massflow of air entering
the cylinders (

.
minp), and the mass of delivered air retained (mair,ret). The definition of each efficiency is

given below:

ηtr =
mair,ret

mair,del
(10)

ηch =
mair,ret

Vref·ρinl
(11)

ηsc =
mair,ret

mtr
(12)

where mair,del is the mass of delivered air, Vref is the reference cylinder volume, ρinl is the density at
the engine inlet and mtr is the mass of the total trapped cylinder charge.

As shown in Figure 5 the CFD model is sensitive to the scavenging gradient and the mass flow-rate
is computed correctly without any corrections needed. The trapping efficiency and the air mass flow
rate through the inlet ports are the most affected quantities by a change in ∆p. Thus, the selection of
the simplest possible CFD configuration (2-D axisymmetric with swirl) leads to a good agreement with
the 0-D mass flow-rate results, succeeding in an efficient hybrid computation.
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As regards validation of the flow and temperature field, the amount of validation data for a CFD
model of a full size operating two-stroke marine engine is limited because of the high cost, size, and
manpower required for such experiments [30]. Nevertheless, existing data from similar engines have
been employed for validation, with the necessary adaptations made according to the similarity laws.
As regards the validation process for the flow field, Figure 6 shows a comparison with literature data
on steady state, cold flow measurements with Particle Image Velocimetry on an engine cylinder with
D = 190 mm and swirl number Sm = 0.33 [31]. The measurements are presented in [31] as axial and
tangential (swirl) velocity components Vz and Vθ respectively as functions of radius, normalized
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with the bulk flow velocity, Wb, for various axial positions. For comparison, Figure 6 presents the
CFD model predictions for the normalized Vz and Vθ components at 25% load, 195 degrees CA, at
the same normalized axial positions. Only one measured axial position is inserted in the graph for
comparison. The computed variation of the tangential velocity component with cylinder radius have a
shape similar to a Lamb–Oseen vortex, for z/D < 2 (z = 0 corresponds to the upper end level of intake
ports). The vortex core is seen as a sharp linear increase from r = 0. The vortex then has a smooth
transition to a curve proportional to 1/r for larger values of r [32]. Overall, the CFD computations agree
with the published experimental results on similar engines [31,33].
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5.3. Calculation of Zone Masses Based on CFD Results

The CFD model employed a species transport equation, which calculated a passive scalar, directly
correlated to the CO2 mass concentration in the cylinder charge. Computational cells with the
highest CO2 mass concentration are allocated to zone III and the respective cells with zero CO2 mass
concentration are allocated to zone I. The remaining volume in the cylinder corresponds to zone II.
Volumes were subsequently converted to masses by employing the respective densities for air and
exhaust gas. This procedure was performed at a 5 crank angle degree interval starting from 135 CA
degrees (beginning of scavenging) until 225 CA degrees (end of scavenging). The mixing coefficients
of the three-zone model were then revised so that results of the 0-D model would be close to results
from CFD simulations.

An example of the CO2 mass fraction evolution during scavenging is shown in Figure 7.
The resulting evolution of masses for this case is shown in Figure 8. Initially, the cylinder is
filled with exhaust gas. As scavenging commences, zone III continuously decreases in size, since a part
of the exhaust gas leaves the cylinder through the exhaust valve and another part is transferred to the
mixing zone. The mixing zone increases rapidly in the beginning of scavenging, since it receives fresh
air from the air zone and exhaust gas from the exhaust gas zone. However, when the exhaust gas zone
disappears, the mixing zone starts to decrease since now a part of it is escaping the cylinder through
the exhaust valve. The air zone increases slowly at first, since most of the incoming air is mixed with
exhaust gases, but increases faster after 180 CAD and eventually becomes larger than the mixing zone.
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6. CFD Results

Results from the 2D CFD model were employed to enhance understanding of the scavenging
process and update the three-zone model. The scavenging process during the time the inlet ports remain
open, can be described by two processes: mixing of incoming air with exhaust gas and displacement of
exhaust gas by the incoming air. The sources of mixing are:

• The jet impingement of air into the cylinder through the inlet ports
• Diffusion between exhaust gas and air at the interface between the two zones
• Flow separation at the inlet port’s edges and formation of recirculation zones.

In this section, the effect of engine load, inlet port angle, and inlet port covering on scavenging
will be presented.

6.1. Effect of Engine Load

Four load points that lie on a typical propeller curve passing from the MCR (maximum continuous
rating) point were investigated. The propeller demand law obeys the following relation between
engine speed and produced power:

P = c·Nβ (13)

where P is engine power, N is engine speed, c is the propeller law coefficient and β usually lies between
3 and 4. Engine load influences the scavenging process in two ways. At increased load, the engine
speed increases which leads to a reduced time that the inlet ports remain open. This is shown in
Table 3, where scavenging time is normalized with reference to the scavenging time at 25% load.
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It is observed that at 50% load scavenging time is reduced by 20%, at 75% it decreases at 70% and
will further decrease at 63% when reaching 100% load. The second load dependent factor affecting
scavenging is boost pressure which increases with increased engine load.

Table 3. Engine operating conditions at different load points.

Engine Load 100% 75% 50% 25%

N [RPM] 115.3 105 91.5 73
P [kW] 7620 5710 3800 1900

pscav [bar] 3.90 3.15 2.20 1.48
pexh [bar] 3.80 3.08 2.15 1.45
∆p [bar] 0.1 0.07 0.05 0.03

ρscav [kg/m3] 4.34 3.54 2.47 1.66
Scavenging time with reference to 25% load 0.63 0.7 0.8 1

Since, scavenge temperature remains relatively invariable, due to the presence of the scavenge air
cooler, increased scavenge pressure leads to increased air density. According to [11] mixing of air with
exhaust gas increases with increased engine load due to the increased difference in density between
the two gases. This is also confirmed in Figure 9 for two CA instances, 175 and 210 CAD.

In both cases mixing between air and exhaust gas is more intense for higher engine load (larger
green area in Figure 9) and air manages to displace a smaller amount of exhaust gas (blue area ends
at a lower axial position). A recirculation zone is formed at the cylinder wall above the scavenge
ports, where pockets of exhaust gas are trapped between zones of fresh air. These pockets increase in
size with increasing engine load, thus more exhaust gas is mixed with the incoming fresh air with
increasing engine load in this configuration.

Energies 2019, 12, x FOR PEER REVIEW 10 of 19 

 

further decrease at 63% when reaching 100% load. The second load dependent factor affecting 
scavenging is boost pressure which increases with increased engine load.  

Table 3. Engine operating conditions at different load points. 

Engine Load 100% 75% 50% 25% 
N [RPM] 115.3 105 91.5 73 
P [kW] 7620 5710 3800 1900 

pscav [bar] 3.90 3.15 2.20 1.48 
pexh [bar] 3.80 3.08 2.15 1.45 
Δp [bar] 0.1 0.07 0.05 0.03 

ρscav [kg/m3] 4.34 3.54 2.47 1.66 
Scavenging time with reference to 25% load 0.63 0.7 0.8 1 

Since, scavenge temperature remains relatively invariable, due to the presence of the scavenge 
air cooler, increased scavenge pressure leads to increased air density. According to [11] mixing of air 
with exhaust gas increases with increased engine load due to the increased difference in density 
between the two gases. This is also confirmed in Figure 9 for two CA instances, 175 and 210 CAD. 

In both cases mixing between air and exhaust gas is more intense for higher engine load (larger 
green area in Figure 9) and air manages to displace a smaller amount of exhaust gas (blue area ends 
at a lower axial position). A recirculation zone is formed at the cylinder wall above the scavenge 
ports, where pockets of exhaust gas are trapped between zones of fresh air. These pockets increase in 
size with increasing engine load, thus more exhaust gas is mixed with the incoming fresh air with 
increasing engine load in this configuration. 

175 CAD 210 CAD  

         
25% 
Load 

50% 
Load 

75% 
Load 

100% 
Load 

25% 
Load 

50% 
Load 

75% 
Load 

100% 
Load 

CO2 mass 
fraction [%] 

Figure 9. CO2 mass fraction field at 175 and 210 CAD for the four available engine loads (θ = 20°). 

6.2. Effect of Inlet Port Angle 

Inlet ports are inclined with respect to the local radius, in order to induce a tangential component 
to the flow entering the engine cylinders. This creates turbulence which is beneficial for the mixing 
of fuel with scavenge air. The swirl could also reduce the recirculation zones that are formed near the 
inlet ports due to flow separation. Moreover, the cold scavenge air cools the cylinder liner and the 
exhaust valve. Increased in-cylinder swirl increases the tangential velocity at the cylinder liner and 
as a result increases the convective heat transfer coefficient. 

Four port inclination angles were investigated: θ = 0°, 10°, 30°, and 20° which is the industry 
standard. The geometric swirl number Ω was used to quantify the port induced swirl [12]. Ω = Aୡ୷୪n୧୬୮A୧୬୮ tan (θ) (14) 

where Acyl is the cross-sectional area of the cylinder, Ainp is the area of one scavenge port and ninp is 
the number of scavenge ports. Visualization for 25% engine load and various port angles is shown in 

Figure 9. CO2 mass fraction field at 175 and 210 CAD for the four available engine loads (θ = 20◦).

6.2. Effect of Inlet Port Angle

Inlet ports are inclined with respect to the local radius, in order to induce a tangential component
to the flow entering the engine cylinders. This creates turbulence which is beneficial for the mixing of
fuel with scavenge air. The swirl could also reduce the recirculation zones that are formed near the
inlet ports due to flow separation. Moreover, the cold scavenge air cools the cylinder liner and the
exhaust valve. Increased in-cylinder swirl increases the tangential velocity at the cylinder liner and as
a result increases the convective heat transfer coefficient.

Four port inclination angles were investigated: θ = 0◦, 10◦, 30◦, and 20◦ which is the industry
standard. The geometric swirl number Ω was used to quantify the port induced swirl [12].
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Ω =
Acyl

ninpAinp
tan(θ) (14)

where Acyl is the cross-sectional area of the cylinder, Ainp is the area of one scavenge port and ninp is
the number of scavenge ports. Visualization for 25% engine load and various port angles is shown
in Figure 10. As expected, for θ = 0◦, a jet-like flow develops, which at 175 CAD (40 CAD after the
beginning of scavenging) has reached the top of the cylinder. The jet is surrounded by a mixing zone
located near the cylinder liner wall. As the port angle and induced swirl increases, the fresh air front
moves from the cylinder axis towards the liner walls forming a V-shaped air front.
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As far as mixing is concerned, it is observed that larger values of port angle favour the mixing
of air with exhaust gas (air penetration to the mixing zone) but hinder the penetration of exhaust
gas to the mixing zone. This is in accordance with the findings of [12]. This is also verified by the
masses calculated by the CFD model. As the port angle increases the mass in zone I increases slower
(see Figure 11), since it loses more air to the mixing zone, while the zone III mass decreases slower,
since less exhaust gas is transferred to the mixing zone.
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6.3. Effect of Inlet Port Covering in Part by the Piston Crown

The covering of the inlet ports by the piston results in an increase of the velocity of the air entering
the cylinder. As a result, the jet-like nature of incoming flow is enhanced. This results in the formation
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of exhaust gas recirculation zones at the sharp edges of the inlet ports, where pockets of exhaust gas
are trapped within fresh air. Hence, mixing of air with exhaust gas is increased due to port covering.

On the contrary, increased port covering does not favour the entrainment of exhaust gas to the
mixing zone. In Figure 12, at 210 CAD the exhaust gas zone (red zone) is slightly larger for increased
inlet port covering. This is seen also in Figure 13 where the evolution of zones I and III masses is
presented for the 25% load case and variable inlet port covering. Zone I increases more slowly when
inlet ports are partly covered by the piston due to increased entrainment of air to the mixing zone.
On the other hand, the mass of zone III decreases at a slower rate when inlet ports are partly covered
since in this case mixing is retarded.
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As Figures 12 and 13 show, no notable differences between the 5% and 10% covering can be
identified for the 25% load case.

7. The Updated Three-Zone Scavenging Model

In this section, the expressions for the evolution of the air and gas penetration coefficient for the
two investigated cases will be presented. The case of varying port angle will be designated as Case I.
The case of varying inlet port covering by the piston will be designated as Case II.
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7.1. Air Penetration Coefficient

In the three-zone model, it is assumed that scavenging happens in two phases. In the first
phase, when scavenge air rushes in engine cylinders, air is rapidly mixed with exhaust gases and the
mixing mechanism is dominant. Hence, during the first phase the air penetration coefficient, µα has a
large value which decreases slowly. During the second phase, displacement becomes the dominant
mechanism of scavenging and µα decreases exponentially. The mathematical expression of the air
penetration coefficient is shown below:

µα =

 aτ2 + b, 0 < τ < τ∗a
µα(τ

∗
a) exp

(
− ln

(
µα(τ

∗
a)

d

)
(τ1)

)
, 0 < τ1 < 1

(15)

where τ1 is normalized scavenging time for the second phase of mixing of air, defined as:

τ1 =
ϕ−ϕEFP

ϕIPC −ϕEFP
(16)

Also, a, b, and d are model parameters and τ∗a. is the time where second mixing phase begins.
The evolution of the air penetration coefficient as a function of normalized scavenging time τ for
different engine load points is shown in Figure 14.
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Figure 14. Air penetration coefficient evolution for different engine load points (θ = 20◦ and C = 0).

The mathematical expression of each model parameter is given below. The expressions were
produced using non-linear regression fitting. The coefficients of each equation were produced using
iterative least square estimations.

7.1.1. Parameter a

This parameter, expresses the rate of decrease of mixing coefficient during the first phase of
scavenging. It increases with increased engine load and port covering and decreases with increased
port angle. This means that during the first phase of scavenging, mixing decreases more rapidly with
increased port angle and slower for increased engine load and port covering.

(I) a =

 0.03− 0.37
(

N
Nmcr

)−2.2
, θ ∈ [10, 30]

0, θ ∈ [0, 10]
(17)

(II) a = 1.1− 1.42
( N

Nmcr

)−0.8
+ 0.5·C0.2 (18)
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7.1.2. Parameter b

Model parameter b, expresses the initial value of the mixing coefficient during IPO. This parameter
was found to be increasing with increasing with engine load, port angle and port covering.

(I) b = 0.8− 0.05
( N

Nmcr

)−1.5
+ 0.2·Ω0.8 (19)

(II) b = 2.8− 1.9
( N

Nmcr

)−0.1
+ 0.5·C (20)

7.1.3. Parameter d

This parameter, expresses how steep the exponential decline of the air penetration coefficient is. It
was observed to increase with engine load and port covering and decrease with increased inlet port
angle. This means that with increased engine load and port covering, µα decreases slower, while as
inlet port angle increases µα decreases more rapidly.

(I) d = 0.28 + 0.035
( N

Nmcr

)2.5
− 0.29·Ω0.35 (21)

(II) d = 0.1
( N

Nmcr

)2.2
+ 0.16·C0.1 (22)

7.1.4. Parameter τ∗a

Parameter τ∗a expresses the time instant when the second mixing phase commences. This parameter
was found to increase with port angle, and be independent of engine load or inlet port covering.

(I) τ∗a = 0.27 + 0.3·Ω0.7 (23)

(II) τ∗a = 0.42, ∀ C (24)

7.2. Gas Penetration Coefficient

The model assumes that the entrainment of exhaust gases to the mixing zone is divided in two
phases. In the first phase, the evolution of mixing resembles the one of entrainment of ambient fluid
into jets and increases parabolically. The initial phase of increasing mixing will be terminated due to jet
interaction and confinement as well as due to the displacement of the exhaust gas. In the second phase,
mixing of exhaust gas decreases and µg drops exponentially. The mathematical expression of µg is
shown in Equation (25), where σ and kg are model parameters and τ2. is normalized scavenging time
of the second mixing phase.

µg =

 σ
√

τ
τ∗g

, 0 < τ < τ∗g

e−kg(τ2)µg

(
τ∗g

)
(1 + τ2) , 0 < τ2 < 1

(25)

The duration of the first mixing phase τ∗g. was estimated at 15–20% of total scavenging time hence,
τ∗g = 0.17. . The evolution of the gas penetration coefficient as a function of normalized scavenging
time τ for different engine load points is shown in Figure 15.
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In reality, the transition from one mixing phase to the next, that takes place in τ∗g would be quite
smoother. However, the presented expression was preferred since it provided a better prediction of the
evolution of each mass.

7.2.1. Parameter σ

This parameter expresses the peak value of the gas penetration coefficient during the first phase
of mixing. Increased values of σ indicate increased mixing of exhaust gas. Since mixing increases with
load, σ also increases with load. On the other hand, for increased inlet port angle, the recirculation
zones that are formed act as a barrier towards the entrainment of exhaust gas to the mixing zone [9].
As a result, σ decreases with increased port angle. As far as port covering by the piston is concerned, σ
decreases with port covering, since port covering was found to hinder the entrainment of exhaust gas
to the mixing zone.

(I) σ = 0.75 + 0.4
( N

Nmcr

)5
− 0.7·Ω (26)

(II) σ = 0.45 + 0.4
( N

Nmcr

)5
− 0.6·C0.4 (27)

7.2.2. Parameter kg

Model parameter kg expresses how rapidly the entrainment of exhaust gas to the mixing zone
declines. Increased values of kg indicate decreased mixing. This parameter increased with engine load
and port angle and decreased with inlet port covering.

(I) kg = 6.5 + 0.5
( N

Nmcr

)3
+ 5·Ω0.5 (28)

(II) kg = 10.5 +
( N

Nmcr

)4
+ 2·C0.6 (29)

8. Validation of the Updated Three-Zone Model Against CFD Results

The revised zero-dimensional three-zone model was validated against results from CFD
simulations. The predicted masses at each zone using the updated 0-D model were compared
to the masses predicted by the 2-D CFD model. Validation results are presented in Figures 16 and 17
where CFD results are presented with solid line and results of the updated 0-D model are presented
with dashed line. In both cases, the updated model manages to accurately predict the qualitative
evolution of scavenging, as predicted by the CFD model. In both presented cases the updated 0-D
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model slightly overestimates the mass of the air zone and predicts the dissipation of the exhaust gas
zone slightly faster than the CFD model.
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Results of the original 0-D model are also included in the graphs (dotted line) for comparison.
In both cases, the original model significantly overestimates the evolution of zone I. This means that the
original model predicts that less amount of air is mixed with exhaust gases, than the one predicted by
the CFD model. Moreover, the original model predicts that the dissipation of zone III takes place about
20 CAD earlier than the CFD. As far as the mixing zone is concerned, results from the original model are
close to the ones from CFD simulations until the dissipation of zone III takes place. Once this happens,
the mixing zone begins to reduce rapidly and the original 0-D model results deviate significantly from
CFD simulation results. The amount of gas that remains in the engine cylinder at the end of scavenging
(235 CAD) is very close in both cases.
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9. Conclusions

An updated zero-dimensional three-zone model for the simulation of the scavenging process of
uniflow scavenged two-stroke diesel engines was presented. In order to gain insight on the scavenging
process of the engine and update the model, a CFD model of a large two-stroke marine diesel engine
was used. The updated model, takes into account the effect of engine load, port angle, and inlet
port covering on the scavenging process. Each of the three zones of the model (air zone, mixing
zone and exhaust gas zone), is considered as a control volume. The entrainment of air and exhaust
gas in the mixing zone is specified through time varying mixing coefficients. The influence of the
different scavenging mechanisms was implicitly taken into account by considering the scavenging
process to constitute two different phases. CFD simulations showed that mixing of air with exhaust
gas increased with increased engine load. Moreover, increasing inlet port-induced swirl and inlet port
covering were found to increase the entrainment of air to the mixing zone but decrease the entrainment
of exhaust gases to the mixing zone. These results were compatible with the findings of previous
works such as [9,11,12]. The updated three-zone model can be used in conjunction with an engine
performance prediction code to simulate the performance and especially the transient exhaust gas
temperature of a modern uniflow scavenged two stroke large marine diesel engine. The described
updating procedure enabled a higher accuracy of the 0-D model, without increasing the computational
time and the complexity, by taking into account the gas flow in the cylinder through detailed CFD
simulations. The future objective of this work is to be able to investigate with better accuracy the
transient response of such a marine engine with a coupled SCR aftertreatment system when driving a
propeller of a ship in heavy weather.
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Nomenclature

A Area, m2

a Air penetration coefficientarameter
BDC Bottom de center
b Air penetration coefficientarameter
C Percentage of the inlet port area covered by the piston own
CAD Crank ang degrees
c Propeller law coefficient
d Air penetration coefficientarameter
EGR Exhaust gas recirculation
h Specific enthalpy, J/kg
IPO Inlet port oning
kg Gas penetration coefficient parameter
.

m Mass flow rate, kg/sec
MCR Maximum continuous rating, kW
N Engine rotational speed, RPM
ninp Number of inlet ports
p Pressure, r
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P Power, kW
Q Heat flow, J
Sm Swirl number
SCR Selective catalytic reduction
T Temperature, K
TDC Top dead center
u Specific energy, J/kg
V Volume, m3

Vθ Tangential velocity component, m/s
Vz Axial velocity component, m/s
Wb Mean velocity at the axial position, m/s
Greek Characters
β Propeller law exponent
ηch Charging efficiency
ηsc Scavenging efficiency
ηtr Trapping efficiency
θ Inlet port angle, ◦

κ Constant of the original three-zone model
λ Constant of the original three-zone model
µ Mixing coefficient
ξ Constant of the original three-zone model
ρ Density, kg/m3

σ Gas penetration coefficient parameter
τ Dimensionless scavenging time
τ1 Normalized scavenging time for second phase of mixing of air
τ2 Normalized scavenging time for second phase of mixing of burnt gas
τ∗a End of first mixing phase for the air
τ∗g End of first mixing phase for the exhaust gas
ϕ Crank angle, ◦

Ω Geometric swirl numr
Subscripts
a Air
air, ret Airetained
air, del Air delivered
tr Trapped cylinder charge
cyl Cylinder
EBF End of backflow
EFP End of first mixing phase
exh Exhst receiver
exv Exhaust valve
g Exhaust Gas
IPC Inlet port closing
j Different entries to the control volume
MCR Maximum continuous rating, kW
scav Scavenge receiver
sf Surfaces with different rates of heat traner
inp Inleports
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